Location: Home > News Center > Highlights

Highlight 2009-046

Update time:12 01, 2009

Geophysical Prospecting, 2009, 57: 931-941

Lax-Wendroff and Nyström methods for seismic modelling

Chen, Jing-Bo

Abstract

Lax-Wendroff and Nyström methods are numerical algorithms of temporal approximations for solving differential equations. These methods provide efficient algorithms for high-accuracy seismic modeling. In the context of spatial pseudospectral discretizations, I explore these two kinds of methods in a comparative way. Their stability and dispersion relation are discussed in detail. Comparison between the fourth-order Lax-Wendroff method and a fourth-order Nyström method shows that the Nyström method has smaller stability limit but has a better dispersion relation, which is closer to the sixth-order Lax-Wendroff method. The structure-preserving property of these methods is also revealed. The Lax-Wendroff methods are a second-order symplectic algorithm, which is independent of the order of the methods. This result is useful for understanding the error growth of Lax-Wendroff methods. Numerical experiments based on the scalar wave equation are performed to test the presented schemes and demonstrate the advantages of the symplectic methods over the nonsymplectic ones.

 

 

Contact
Related Articles
Reference
COPYRIGHT @ INSTITUTE OF GEOLOGY AND GEOPHYSICS CHINESE ACADEMY OF SCIENCES (IGGCAS)
No. 19, Beitucheng Western Road, Chaoyang District, 100029, Beijing, P.R.China
Tel:010-82998001 Fax:010-62010846 Email:suoban@mail.iggcas.ac.cn