Researchgate: https://www.researchgate.net/profile/Xinan-Yue
Google Scholar: http://scholar.google.com/citations?user=UWF7N4wAAAAJ
ORCID: https://orcid.org/0000-0003-3379-9392
First author or Corresponding author publications:
89. Yue, X.*, Ning, B., Jin, L., & Wang, C. (2024). A tristatic phased array radar system in China. Nature Astronomy, 8, 673. https://doi.org/10.1038/s41550-024-02274-z
88. Yue, X.*, Ning, B., Jin, L., et al. (2024). The Sanya Incoherent Scatter Radar Tristatic System and Initial Experiments.Space Weather, 22, e2024SW003963. https://doi.org/10.1029/2024SW003963
87. Zhang, N., Yue, X.*, Cai, Y., Wang, J., Li, M., Ding, F., & Ning, B. (2024). F Region neutral wind and electric field measured by SYISR and evaluation. Journal of Geophysical Research: Space Physics, 129, e2024JA032514. https://doi.org/10.1029/2024JA032514
86. Yue, X.*, Cai, Y., Wang, J., Lei, J., Wang, Z., Wang, Y., et al. (2023). Ionospheric pre-sunrise uplift: Comparison of Sanya Incoherent Scatter Radar observations and numerical simulations. Journal of Geophysical Research: Space Physics, 128, e2022JA031119. https://doi.org/10.1029/2022JA031119
85. Yan, L., He, F., Yue, X., Wei, Y., Wang, Y., Chen, S., et al. (2023). The 8-year solar cycle during the Maunder Minimum. AGU Advances, 4, e2023AV000964. https://doi.org/10.1029/2023AV000964 [共同一作]
84. Yue, X*., et al. (2023). On the Ion Line Calibration by Plasma Line in ISR Measurements. Remote Sensing, 2023, 15, 1553. https://doi.org/10.3390/rs15061553
83. Zhou, X., Yue, X.*, Wang, J., Cai, Y., Ding, F., Ning, B., et al. (2023). “Ionospheric drizzle” observed in the pre-dawn E-F valley over Sanya. Journal of Geophysical Research: Space Physics, 128, e2023JA031481. https://doi.org/10.1029/2023JA031481
82. Zhou, X., Yue, X.*, Cai, Y., Ren, Z., Wei, Y., & Pan, Y. (2023). Simulated long-term evolution of the thermosphere during the Holocene – Part 2: Circulation and solar tides. Atmospheric Chemistry and Physics, 23, 6383–6393. https://doi.org/10.5194/acp-23-6383-2023
81. Cai, Y., Yue, X.*, Zhou, X., Ren, Z., Wei, Y., & Pan, Y. (2023). Simulated long-term evolution of the thermosphere during the Holocene – Part 1: Neutral density and temperature. Atmospheric Chemistry and Physics, 23, 5009–5021. https://doi.org/10.5194/acp-23-5009-2023
80. He, J., Pedatella, N. M., Astafyeva, E., Yue, X.*, Ren, Z., & Yu, T. (2023). Improved thermosphere mass density recovery during the 5 April 2010 geomagnetic storm by assimilating NO cooling rates in a coupled thermosphere-ionosphere model. Journal of Geophysical Research: Space Physics, 128, e2023JA031959. https://doi.org/10.1029/2023JA031959
79. He, J., Astafyeva, E., Yue, X.*, Ding, F., & Maletckii, B. (2023). The giant ionospheric depletion on 15 January 2022 around the Hunga Tonga-Hunga Ha'apai volcanic eruption. Journal of Geophysical Research: Space Physics, 128, e2022JA030984. https://doi.org/10.1029/2022JA030984
78. 周旭, 乐新安*, 陈桂万, 余优, 胡连欢 (2023). MJO与中间层-低热层风场潮汐DE3季节内变化性的关联. 地球物理学报, 66(12): 4817-4827. https://doi.org/10.6038/cjg2023R0311
77. Yue, X.*, Wan, W., Ning, B., & Jin, L. (2022). An active phased array radar in China. Nature Astronomy, 6, 619. https://doi.org/10.1038/s41550-022-01684-1
76. Yue, X.*, Wan, W., Ning, B., Jin, L., Ding, F., Zhao, B., et al. (2022). Development of the Sanya incoherent scatter radar and preliminary results. Journal of Geophysical Research: Space Physics, 127, e2022JA030451. https://doi.org/10.1029/2022JA030451
75. Yue, X.*, Cai, Y., Ren, Z., Zhou, X., Wei, Y., & Pan, Y. (2022). Simulated long-term evolution of the ionosphere during the Holocene. Journal of Geophysical Research: Space Physics, 127, e2022JA031042. https://doi.org/10.1029/2022JA031042
74. Zhou, X., Yue, X.*, Ren, Z., Liu, Y., Cai, Y., Ding, F., & Wei, Y. (2022). Impact of Anthropogenic Emission Changes on the Occurrence of Equatorial Plasma Bubbles. Geophysical Research Letters, 49(3), e2021GL097354. https://doi.org/https://doi.org/10.1029/2021GL097354
73. Zhou, X., Yue, X.*, Yu, Y., & Hu, L. (2022). Day-to-Day Variability of the MLT DE3 using Joint Analysis on Observations from TIDI-TIMED and A Meteor Radar Meridian Chain. Journal of Geophysical Research: Atmospheres, 127. https://doi.org/10.1029/2021JD035794
72. Zhou, X., Yue, X.*, Liu, L., Yu, Y., Ding, F., Ren, Z., Jin, Y., & Yin, H. (2022). Decadal Continuous Meteor-Radar Estimation of the Mesopause Gravity Wave Momentum Fluxes over Mohe: Capability Evaluation and Interannual Variation. Remote Sensing, 14, 5729. https://doi.org/10.3390/rs14225729
71. Cai, Y., Yue, X.*, Wang, W., Zhang, S.-R., Liu, H., Lei, J., et al. (2022). Ionospheric topside diffusive flux and the formation of summer nighttime ionospheric electron density enhancement over Millstone Hill. Geophysical Research Letters, 49, e2021GL097651. https://doi.org/https://doi.org/10.1029/2021GL097651
70. Cai, Y., Yue, X.*, Wang, W., Zhang, S.-R., Liu, H., Lin, D., Wu, H., Yue, J., Bruinsma S. L., Ding, F., Ren, Z., & Liu, L. (2022). Altitude extension of the NCAR-TIEGCM (TIEGCM-X) and evaluation. Space Weather, 20, e2022SW003227. https://doi.org/10.1029/2022SW003227
69. He, J., Yue, X.*, Astafyeva, E., Le, H., Ren, Z., Pedatella, N. M., Ding, F., & Wei, Y. (2022). Global gridded ionospheric electron density derivation during 2006–2016 by assimilating COSMIC TEC and its validation. Journal of Geophysical Research: Space Physics, 127, e2022JA030955. https://doi.org/10.1029/2022JA030955
68. He, J., Yue, X.*, Le, H., Ren, Z., & Ding, F. (2022). High-resolution and accurate low-latitude gridded electron density generation and evaluation. Journal of Geophysical Research: Space Physics, 127, e2021JA030192. https://doi.org/10.1029/2021JA030192
67. Li, M., Yue, X.*, et al. (2022). Moon Imaging Technique and Experiments Based on Sanya Incoherent Scatter Radar. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14, no. 5112314. https://doi.org/10.1109/TGRS.2022.3167156
66. Li, M., Yue, X.*, Ding, F., Ning, B., Wang, J., Zhang, N., Luo, J., Huang, L., Wang, Y., & Wang, Z. (2022). Focused Lunar Imaging Experiment Using the Back Projection Algorithm Based on Sanya Incoherent Scatter Radar. Remote Sensing, 14, 2048. https://doi.org/10.3390/rs14092048
65. Li, M., Yue, X.*, & Wan, W. (2022). A new method to calibrate residual ionospheric error of GNSS RO bending angle. GPS Solutions, 26, 59. https://doi.org/10.1007/s10291-022-01235-1
64. Wan, W., Zhou, X., Yue, X.*, Wei, Y., Ding, F., & Ren, Z. (2022). Interpretation of the Altitudinal Variation in the Martian Ionosphere Longitudinal Wave‐3 Structure. Journal of Geophysical Research: Space Physics, 127(1), e2021JA030096. https://doi.org/10.1029/2021JA030096
63. Zeng, L., Yue, X.*, Ke, C., Ding, F., Zhao, B., & Ning, B. (2022). Potential direct observation of meteoroid fragmentation by a high range resolution radar. Icarus, 372, 114763. https://doi.org/10.1016/j.icarus.2021.114763
62. Wang, J., Yue, X.*, Ding, F., Ning, B., Jin, L., Ke, C., Zhang, N., Luo, J., Wang, Y., Yin, H., Li, M., & Cai, Y. (2022). The Effect of Space Objects on Ionospheric Observations: Perspective of SYISR. Remote Sensing, 14, 5092. https://doi.org/10.3390/rs14205092
61. Wang, J., Yue, X.*, Ding, F., Ning, B., Jin, L., Ke, C., Zhang, N., Wang, Y., Yin, H., Li, M., & Cai, Y. (2022). Simulation and observational evaluation of space debris detection by Sanya incoherent scatter radar. Radio Science, 57, e2022RS007472. https://doi.org/10.1029/2022RS007472
60. Zhang, N., Yue, X.*, Ding, F., Ning, B., Wang, J., Luo, J., Wang, Y., Li, M., & Cai, Y. (2022). Initial Tropospheric Wind Observations by Sanya Incoherent Scatter Radar. Remote Sensing, 14, 3138. https://doi.org/10.3390/rs14133138
59. 尹翰林, 乐新安*, 王俊逸, 丁锋, 宁百齐, 王永辉, 李鸣远, 张宁 (2022). 基于CFAR的三亚非相干散射雷达数据预处理研究. 地球物理学报, 65(7), 2394-2401. https://doi.org/10.6038/cjg2022P0987
58. 李鸣远,乐新安*,魏勇,丁锋,宁百齐,曾令旗,赵必强 (2022). 巴克码无旁瓣滤波在地基雷达月球成像中的应用. 雷达科学与技术, 20(1), 22-27.
57. Cai, Y., Wang, W., Zhang, S.-R., Yue, X.*, Ren, Z., & Liu, H. (2021). Climatology Analysis of the Daytime Topside Ionospheric Diffusive O+ Flux Based on Incoherent Scatter Radar Observations at Millstone Hill. Journal of Geophysical Research: Space Physics, 126(10), e2021JA029222. https://doi.org/https://doi.org/10.1029/2021JA029222
56. He, J., & Yue, X.* (2021). The Impact of Perturbing Eddy Diffusion and Upper Boundary on the Ionosphere EnKF Assimilation System. Journal of Geophysical Research: Space Physics, 126. https://doi.org/10.1029/2021JA029366
55. He, J., Yue, X.*, & Ren, Z. (2021). The Impact of Assimilating Ionosphere and Thermosphere Observations on Neutral Temperature Improvement: Observing System Simulation Experiments Using EnKF. Space Weather, 19, e2021SW002844. https://doi.org/10.1029/2021SW002844
54. Li, M., & Yue, X.* (2021). Statistically analyzing the effect of ionospheric irregularity on GNSS radio occultation atmospheric measurement. Atmospheric Measurement Techniques, 14, 3003-3013. https://doi.org/10.5194/amt-14-3003-2021
53. Li, M., Yue, X.*, Zhao, B., Zhang, N., Wang, J., Zeng, L., et al. (2021). Simulation of the Signal-to-Noise Ratio of Sanya Incoherent Scatter Radar Tristatic System. IEEE Transactions on Geoscience and Remote Sensing, 59(4), 2982-2993. https://doi.org/10.1109/TGRS.2020.3008427
52. Zhou, X., Yue, X.*, Liu, H.-L., Wei, Y., & Pan, Y. (2021). Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations. Earth and Planetary Physics, 5, 1-10. https://doi.org/10.26464/epp2021040
51. Zhou, X., Yue, X.*, Liu, H. L., Lu, X., Wu, H., Zhao, X., & He, J. (2021). A Comparative Study of Ionospheric Day-To-Day Variability Over Wuhan Based on Ionosonde Measurements and Model Simulations. Journal of Geophysical Research: Space Physics, 126. https://doi.org/10.1029/2020JA028589
50. 李鸣远,王永辉,尹翰林,乐新安*,丁锋,曾令旗,赵必强,魏勇,宁百齐 (2021). 基于三亚非相干散射雷达的月球正面南北半球拼接成像研究. 地球与行星物理论评,52(4),450-458. https://doi.org/10.19975/j.dqyxx.2021-014
49. 李明哲, 乐新安*(2021). 电离层小尺度因素对无线电大气掩星弯曲角的影响. 航天器环境工程, 38(3), 318-327.
48. Yue, X.*, Wan, W., Xiao, H., Zeng, L. Q., Ke, C. H., Ning, B. Q., Ding, F., Zhao, B. Q., Jin, L., Li, C., Li, M. Y., Wang, J. Y., Hao, H. L., & Zhang, N. (2020). Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar. Earth and Planetary Physics, 4(6), 579–587. https://doi.org/10.26464/epp2020063
47. He, J., Yue, X. *, Hu, L., Wang, J., Li, M., & Ning, B., et al. (2020). Observing system impact on ionospheric specification over China using EnKF assimilation. Space Weather, 18, e2020SW002527. https://doi.org/10.1029/2020SW002527
46. Li, M., Yue, X. *, Wan, W., & Schreiner, W. S. (2020). Characterizing ionospheric effect on GNSS radio occultation atmospheric bending angle. Journal of Geophysical Research: Space Physics, 125, e2019JA027471. https://doi.org/10.1029/2019JA027471
45. Zhou, X., Liu, H.‐L., Lu, X., Zhang, R., Maute, A., Wu, H., Yue, X. *, & Wan, W. (2020). Quiet‐time day‐to‐day variability of equatorial vertical E × B drift from atmosphere perturbations at dawn. Journal of Geophysical Research: Space Physics, 125, e2020JA027824. https://doi.org/10.1029/2020JA027824
44. 何建辉, 乐新安* (2020). 基于热层电离层耦合数据同化的热层参量估计. 地球物理学报, 63(7), 2497-2505. https://doi.org/10.6038/cjg2020N0267
43. She, C., Yue, X.*, Hu, L., & Zhang, F. (2020). Estimation of Ionospheric Total Electron Content from a Multi-GNSS Station in China. IEEE Transactions on Geoscience and Remote Sensing, 58(2), 852-860.
42. He, J., Yue, X.*, Le, H., Ren, Z., & Wan, W. (2020). Evaluation on the quasi‐realistic ionospheric prediction using an ensemble Kalman filter data assimilation algorithm. Space Weather, 18, e2019SW002410. https://doi.org/10.1029/2019SW002410
41. 姜金哲, 乐新安*, 任志鹏, 万卫星 (2020). 利用GCITEM-IGGCAS模拟DE2潮汐Hough波模对电离层的影响. 地球物理学报, 63(1), 57-62.
40. He, J., Yue, X.*, Wang, W., & Wan, W. (2019). EnKF ionosphere and thermosphere data assimilation algorithm through a sparse matrix method. Journal of Geophysical Research: Space Physics, 124, 7356-7365. https://doi.org/10.1029/2019JA026554
39. 王林, 万卫星, 乐新安*, 任志鹏, 佘承莉 (2019). 应用经验正交函数估算顶部电离层电子密度剖面. 地球物理学报, 62(05), 1582-1590.
38. Chen, T., Wan, W., Xiong, J., Yu, Y., Ren, Z., & Yue, X.* (2019). A statistical approach to quantify atmospheric contributions to the ITEC WN4 structure over low latitudes. Journal of Geophysical Research: Space Physics, 124, 2178–2197. https://doi.org/10.1029/2018JA026090
37. Cai, Y., Yue, X.*, Wang, W., Zhang, S., Liu, L., Liu, H., & Wan, W. (2019). Long‐term trend of topside ionospheric electron density derived from DMSP data during 1995–2017. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2019JA027522
36. Yue, X.*, Hu, L., Wei, Y., Wan, W., & Ning, B. (2018). Ionospheric trend over Wuhan during 1947–2017: Comparison between simulation and observation. Journal of Geophysical Research: Space Physics, 123, 1396–1409. https://doi.org/10.1002/2017JA024675
35. Wang, J., Yue, X.*, Wei, Y., & Wan, W. (2018). Optimization of the Mars ionospheric radio occultation retrieval. Earth and Planetary Physics, 2, 292-302. https://doi.org/10.26464/epp2018027
34. 乐新安*,万卫星(2017). 数字电离层建设的必要性. 科技导报, 35(19), 62-66. https://doi.org/10.3981/j.issn.1000-7857.2017.19.008
33. Yue, X.*, Wan, W., Yan, L., Sun, W., Hu, L., &Schreiner, W. S. (2017). The Effect of Solar Radio Bursts on GNSS Signals, Chapter 22 in Book “Extreme Events in Geospace: Origins, Predictability, and Consequences”, edited by N. Buzulukova, published by Elsevier.
32. Hu, L., Yue, X. *, & Ning, N. (2017), Development of the Beidou Ionospheric Observation Network in China for space weather monitoring. Space Weather, 15, 974–984. https://doi.org/10.1002/2017SW001636
31. Yue, X.*, Wan, W., Liu, L., Liu, J., Zhang, S., Schreiner, W. S., Zhao, B., & Hu, H. (2016). Mapping the conjugate and corotating storm-enhanced density during 17 March 2013 storm through data assimilation. Journal of Geophysical Research: Space Physics, 121, 12202-12210. https://doi.org/10.1002/2016JA023038
30. Yue, X.*, Wang, W., Lei, J., Burns, A., Zhang, Y., Wan, W., Liu, L., Hu, L., Zhao, B., & Schreiner, W. S. (2016). Long-lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm. Journal of Geophysical Research: Space Physics, 121, 9234–9249. https://doi.org/10.1002/2016JA022984
29. Yue, X.*, Schreiner, W. S., Pedatella, N., & Kuo, Y.-H. (2016). Characterizing GPS radio occultation loss of lock due to ionospheric weather. Space Weather, 14, 285-299. https://doi.org/10.1002/2015SW001340
28. 乐新安*,郭英华,曾帧,万卫星 (2016). 近地空间环境的GNSS无线电掩星探测技术. 地球物理学报,59(4),1161-1188. https://doi.org/10.6038/cjg20160401
27. Yue, X.*, Schreiner, W. S., Kuo, Y.-H., & Lei, J. (2015). Ionosphere equatorial ionization anomaly observed by GPS radio occultations during 2006–2014. Journal of Atmospheric and Solar-Terrestrial Physics, 129, 30-40. https://doi.org/10.1016/j.jastp.2015.04.004
26. Yue, X.*, Schreiner, W. S., Zeng, Z., Kuo, Y.-H., & Xue, X. (2015). Case study on complex sporadic E layers observed by GPS radio occultations. Atmospheric Measurement Techniques, 8, 225-236. https://doi.org/10.5194/amt-8-225-2015
25. Yue, X.*, Schreiner, W. S., Pedatella, N., Anthes, R. A., Mannucci, A. J., Straus, P. R., & Liu, J.-Y. (2014). Space Weather Observations by GNSS Radio Occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2. Space Weather, 12, 616-621. https://doi.org/10.1002/2014SW001133
24. Yue, X.*, Schreiner, W. S., Kuo, Y.-H., Braun, J. J., Lin, Y.-C., & Wan, W. (2014). Observing System Simulation Experiment Study on Imaging the Ionosphere by Assimilating ground GNSS, LEO based Radio Occultation and Ocean Reflection, and Cross Link. IEEE Transactions on Geoscience and Remote Sensing, 52(7), 3759-3773. https://doi.org/10.1109/TGRS.2013.2275753
23. Yue, X.*, Schreiner, W.S., Kuo, Y-H., Hunt, D.C., & Rocken, C. (2013). GNSS Radio Occultation Technique and Space Weather Monitoring, Proceedings of the 26th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2013), Nashville, TN, September 2013, pp. 2508-2522.
22. Yue, X.*, et al. (2013). The effect of the solar radio bursts on the GNSS radio occultation signals. Journal of Geophysical Research: Space Physics, 118, 5906–5918. https://doi.org/10.1002/jgra.50525
21. Yue, X.*, Schreiner, W. S., & Kuo, Y.-H. (2013). Evaluating the effect of the global ionospheric map on aiding retrieval of radio occultation electron density profiles. GPS Solutions, 17(3), 327-335. https://doi.org/10.1007/s10291-012-0281-9
20. Yue, X.*, Schreiner, W. S., Kuo, Y.-H., Wu, Q., Deng, Y., & Wang, W. (2013). GNSS radio occultation derived electron density quality in high latitude and polar region: NCAR-TIEGCM simulation and real data evaluation. Journal of Atmospheric and Solar-Terrestrial Physics, 98, 39-49. https://doi.org/10.1016/j.jastp.2013.03.009
19. Yue, X.*, Schreiner, W. S., Rocken, C., & Kuo, Y.-H. (2013). Validate the IRI2007 model by the COSMIC slant TEC data during the extremely solar minimum of 2008. Advance in Space Research, 51, 647-653. https://doi.org/10.1016/j.asr.2011.08.011
18. Yue, X.*, W. S. Schreiner,Y.-H. Kuo, D. Hunt , W. Wang, S. Solomon , A. Burns , D. Bilitza , J. Y. Liu , W. Wan , & J. Wickert (2012). Global 3-D Ionospheric Electron Density Reanalysis based on Multi-Source Data Assimilation. Journal of Geophysical Research: Space Physics, 117, A09325. https://doi.org/10.1029/2012JA017968
17. Yue, X.*, W. S. Schreiner, & Y.-H. Kuo (2012). A feasibility study of the radio occultation electron density retrieval aided by a global ionospheric data assimilation model. Journal of Geophysical Research: Space Physics,117, A08301. https://doi.org/10.1029/2011JA017446.
16. Yue, X.*, W. S. Schreiner, C. Rocken, Y.-H. Kuo, & J. Lei (2012). Artificial ionospheric Wave Number 4 structure below the F2 region due to the Abel retrieval of Radio Occultation measurements. GPS Solutions, 16(1), 1-7. https://doi.org/10.1007/s10291-010-0201-9.
15. Yue, X.*, W. S. Schreiner, C. Rocken, & Y.-H. Kuo (2011). Evaluation of the orbit altitude electron density estimation and its effect on the Abel inversion from radio occultation measurements. Radio Science, 46, RS1013. https://doi.org/10.1029/2010RS004514
14. Yue, X. *, W. S. Schreiner, D. Hunt, C. Rocken, & Y.-H. Kuo (2011). Quantitative evaluation of the low Earth orbit satellite based slant total electron content determination. Space Weather, 9, S09001. https://doi.org/10.1029/2011SW000687
13. Yue, X.*, W. S. Schreiner, Y.-C. Lin, C. Rocken, Y.-H. Kuo, & B. Zhao (2011). Data assimilation retrieval of electron density profiles from radio occultation measurements. Journal of Geophysical Research: Space Physics, 116, A03317. https://doi.org/10.1029/2010JA015980
12. Yue, X.*, W. S. Schreiner, J. Lei, C. Rocken, D. C. Hunt, Y.-H. Kuo, & W. Wan (2010). Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event. Journal of Geophysical Research: Space Physics, 115, A00G09. https://doi.org/10.1029/2010JA015466
11. Yue, X.*, W. S. Schreiner, J. Lei, S. V. Sokolovskiy, C. Rocken, D. C. Hunt, & Y.-H. Kuo (2010). Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Annales Geophyicae, 28(1), 217–222. https://doi.org/10.5194/angeo-28-217-2010
10. Yue, X.*, W. S. Schreiner, J. Lei, C. Rocken, Y.-H. Kuo, & W. Wan (2010). Climatology of ionospheric upper transition height derived from COSMIC satellites during the solar minimum of 2008. Journal of Atmospheric and Solar-Terrestrial Physics, 72(17), 1270-1274. https://doi.org/10.1016/j.jastp.2010.08.018
9. Yue, X., W. Wan, L. Liu, B. Ning, B. Zhao, G. Li, & B. Xiong (2010). Development of an ionospheric numerical assimilation nowcast and forecast system based on Gauss-Markov kalman filter-An observation system simulation experiment taking example for China and its surrounding area, Chinese Journal of Geophysics (both in Chinese and English), 53(4), 787-795. https://doi.org/10.3969/j.issn.0001-5733.2010.04.003 [乐新安, 万卫星, 刘立波, 宁百齐, 赵必强, 李国主, 熊波 (2010). 基于Gauss-Markov卡尔曼滤波的电离层数值同化现报预报系统的构建——以中国及周边地区为例的观测系统模拟试验, 地球物理学报,2010年04期]
8. Yue, X., W. Wan, L. Liu, H. Le, Y. Chen, & T. Yu (2008), Development of a middle and low latitude theoretical ionospheric model and an observation system data assimilation experiment, Chinese Science Bulletin (Both in Chinese and English), 53(1), 94-101. [乐新安, 万卫星, 刘立波, 乐会军, 陈一定, 余涛 (2007). 中低纬电离层理论模式的构建和一个观测系统数据同化试验. 科学通报, 2007年18期]
7. Yue, X., W. Wan, L. Liu, B. Ning, B. Zhao, & M.-L. Zhang (2008). TIME-IGGCAS model validation: Comparisons with empirical models and observations. Science China Series E-Technical Science (Both in Chinese and English), 51(3), 308-322. [乐新安, 万卫星, 刘立波, 宁百齐, 赵必强, 张满莲 (2008). TIME-IGGCAS模式与经验模式和观测数据的比较. 中国科学(E辑:技术科学), 2008年07期]
6. Yue, X., W. Wan, J. Lei, & L. Liu (2008). Modeling the relationship between E × B vertical drift and the time rate of change of hmF2 (ΔhmF2/Δt) over the magnetic equator. Geophysical Research Letters, 35, L05104. https://doi.org/10.1029/2007GL033051
5. Yue, X., L. Liu, W. Wan, Y. Wei, & Z. Ren (2008). Modeling the effects of secular variation of geomagnetic field orientation on the ionospheric long term trend over the past century. Journal of Geophysical Research: Space Physics, 113, A10301. https://doi.org/10.1029/2007JA012995
4. Yue, X., W. Wan, L. Liu, & T. Mao (2007). Statistical analysis on spatial correlation of ionospheric day-to-day variability by using GPS and Incoherent Scatter Radar observations. Annales Geophysicae, 25, 1815-1825.
3. Yue, X., W. Wan, L. Liu, F. Zheng, J. Lei, B. Zhao, G. Xu, S. Zhang, & J. Zhu (2007). Data assimilation of incoherent scatter radar observation into a one-dimensional midlatitude ionospheric model by applying ensemble Kalman filter. Radio Science, 42, RS6006. https://doi.org/10.1029/2007RS003631
2. Yue, X., W. Wan, L. Liu, & B. Ning (2006). An empirical model of ionospheric foE over Wuhan. Earth Planets Space, 58, 323-330.
1. Yue, X., W. Wan, L. Liu, B. Ning, & B. Zhao (2006). Applying artificial neural network to derive long-term foF2 trends in the Asia/Pacific sector from ionosonde observations. Journal of Geophysical Research: Space Physics, 111, A10303. https://doi.org/10.1029/2005JA011577.
Co-author publications:
125. Xu, S., Ding, F., Yue, X., Cai, Y., Wang, J., Zhou, X., Zhang, N., Song, Q., Mao, T., Xiong, B., et al. (2024). The Observation of Traveling Ionospheric Disturbances Using the Sanya Incoherent Scatter Radar. Remote Sensing, 16, 3126. https://doi.org/10.3390/rs16173126
124. Huang, F., Ruan, H., Lei, J., Zhong, J., Yue, X., Li, G., et al. (2024). Empirical models of foF2 and hmF2 reconstituted by global ionosonde and reanalysis data and COSMIC observations. Space Weather, 22, e2023SW003848. https://doi.org/10.1029/2023SW003848
123. Kuai, J., Sun, H., Liu, L., Zhong, J., Yue, X., Wang, K., et al. (2024). A case study of ionospheric storm-time altitudinal differences at low latitudes during the May 2021 geomagnetic storm. Journal of Geophysical Research: Space Physics, 129, e2024JA032484. https://doi.org/10.1029/2024JA032484
122. Hao, H., Zhao, B., Jin, Y., Yue, X., Ding, F., Li, G., et al. (2024). Latitude variation of the post-sunset plasma density enhancement during the minor geomagnetic storm on 27 May 2021. Journal of Geophysical Research: Space Physics, 129, e2023JA032156. https://doi.org/10.1029/2023JA032156
121. Li, S., Ren, Z., Yu, T., Chen, G., Li, G., Zhao, B., Yue, X., & Wei, Y. (2024). The daytime variations of thermospheric temperature and neutral density over Beijing during minor geomagnetic storm on 3–4 February 2022. Space Weather, 22, e2023SW003677. https://doi.org/10.1029/2023SW003677
120. Li, S., Ren, Z., Yu, T., Chen, G., Li, G., Zhao, B., Yue, X., &, Wei, Y. (2024). The daytime variations of thermospheric temperature and neutral density over Beijing during minor geomagnetic storm on 3–4 February 2022. Space Weather, 22, e2023SW003677. https://doi.org/10.1029/2023SW003677
119. Pedatella, N., Anderson, J., Hsu, C.-T., Ide, K., Kodikara, T., Laskar, F., … Yue, X. (2023). Development of Data Assimilation Systems for the Ionosphere, Thermosphere, and Mesosphere. Bulletin of the AAS, 55(3). https://doi.org/10.3847/25c2cfeb.6d356f92
118. He, J., Astafyeva, E., Yue, X., Pedatella, N. M., Lin, D., Fuller-Rowell, T. J., et al. (2023). Comparison of empirical and theoretical models of the thermospheric density enhancement during the 3–4 February 2022 geomagnetic storm. Space Weather, 21, e2023SW003521. https://doi.org/10.1029/2023SW003521
117. Li, X., Ding, F., Yue, X., Mao, T., Xiong, B., & Song, Q. (2023). Multiwave structure of traveling ionospheric disturbances excited by the Tonga volcanic eruptions observed by a dense GNSS network in China. Space Weather, 21, e2022SW003210. https://doi.org/10.1029/2022SW003210
116. Jin, Y., Zhao, B., Yue, X., Ning, B., Ding, F., Zhou, X., et al. (2023). An evaluation of beam configuration to detect the plasma vector velocity: A simulation method based on the SYISR system. Journal of Geophysical Research: Space Physics, 128, e2022JA031057. https://doi.org/10.1029/2022JA031057
115. Jin, Y., Zhao, B., Hao, H., Yue, X., Ding, F., Ning, B., Zeng, L., & Li, Z. (2023). Preliminary Results of the Three-Dimensional Plasma Drift Velocity at East Asian Low-Latitudes Observed by the Sanya Incoherent Scattering Radar (SYISR). Remote Sensing, 15, 2842. https://doi.org/10.3390/rs15112842
114. Hao, H., Zhao, B., Yue, X., Ding, F., Ning, B., & Zeng, L. (2023). Study on the Method of Extracting Plasma Lines Based on Sanya Incoherent Scatter Radar. Remote Sensing, 15, 2634. https://doi.org/10.3390/rs15102634
113. Chen, S., Wei, Y., Yue, X. et al. (2023). Correlation analysis between the occurrence of epidemic in ancient China and solar activity. Science China - Earth Science, 66, 161–168. https://doi.org/10.1007/s11430-022-9986-5
112. Li, S., Ren, Z., Yue, X., Liu, L., Yu, T., & Wei, Y. (2023). Extracting exospheric temperature from daytime ionospheric electron density profiles. Journal of Geophysical Research: Space Physics, 128, e2022JA030988. https://doi.org/10.1029/2022JA030988
111. He, F., Yao, Z. H., Ni, B. B., Cao, X., Ye, S. Y., Guo, R. L., Li, J. X., Ren, Z. P., Yue, X. A., Zhang, Y. L., Wei, Y., Zhang, X. X., & Pu, Z. Y. (2023). Sawtooth and dune auroras simultaneously driven by waves around the plasmapause. Earth and Planetary Physics, 7(2), 1–10. https://doi.org/10.26464/epp2023023
110. Liu, L., Yang, Y., Zhang, R., Tariq, M. A., Le, H., Chen, Y., ... Yue, X. (2023). Structure of post-midnight enhancements in electron density at the low latitude F-layer ionosphere. Journal of Geophysical Research: Space Physics, 128, e2023JA031376. https://doi.org/10.1029/2023JA031376
109. Zhang, S-R, Cnossen, I., Laštovička, J., Elias, A. G., Yue, X., Jacobi, C., Yue, J., Wang, W., Qian, L., & Goncharenko, L. (2023). Long-term geospace climate monitoring. Frontiers in Astronomy and Space Science, 10:1139230. https://doi.org/10.3389/fspas.2023.1139230
108. Hao, H., Zhao, B., Wan, W., Yue, X., Ding, F., Ning, B., et al. (2022). Initial ionospheric ion line results and evaluation by Sanya incoherent scatter radar (SYISR). Journal of Geophysical Research: Space Physics, 127, e2022JA030563. https://doi.org/10.1029/2022JA030563
107. Wang, C., Xu, J., LÜ, D., Yue, X., Xue, X., Chen, G., Yan, J., Yan, Y., Lan, A., Wang, J., Wang, X., & Tian, Y. (2022). Construction Progress of Chinese Meridian Project Phase II. Chinese Journal of Space Science, 42(4), 539-545. https://doi.org/10.11728/cjss2022.04.yg09
106. Luo, X., Du, J., Lou, Y., Shengfeng, G., Yue, X., Liu, J., & Chen, B. (2022). A Method to Mitigate the Effects of Strong Geomagnetic Storm on GNSS Precise Point Positioning. Space Weather, 20. https://doi.org/10.1029/2021SW002908
105. Yu, B., Xue, X., Scott, C. J., Yue, X., & Dou, X. (2022). An empirical model of the ionospheric sporadic E layer based on GNSS radio occultation data. Space Weather, 20, e2022SW003113. https://doi.org/10.1029/2022SW003113
104. Li, X., Ding, F., Yue, X., & Li, J. (2022). Short-period concentric traveling ionospheric disturbances excited by the launch of China's Long March 4B rocket detected by 1 Hz GNSS data. Space Weather, 20, e2021SW003003. https://doi.org/10.1029/2021SW003003
103. Chen, Y., et al., Yue, X., et al. (2021). The Global Open Science Cloud Landscape. http://dx.doi.org/10.5281/zenodo.5575275
102. Chen, S., Wei, Y., He, F., Yue, X., Xu, K., Wang, Y., et al. (2021). Evaluation of the 900‐Year European Auroral Records With Extreme Value Theory. Journal of Geophysical Research: Space Physics, 126, e2021JA029481. https://doi.org/10.1029/2021JA029481
101. Liu, Z., Fang, H., Yue, X., & Lyu, H. (2021). Wavenumber‐4 Patterns of the Sporadic E Over the Middle‐ and Low‐Latitudes. Journal of Geophysical Research: Space Physics, 126, e2021JA029238. https://doi.org/10.1029/2021JA029238
100. Yu, T., Wang, W., Ren, Z., Cai, X., Yue, X., & He, M. (2021). The response of middle thermosphere (~160 km) composition to the 20-21 November 2003 superstorm. Journal of Geophysical Research: Space Physics, 126, e2021JA029449. https://doi.org/10.1029/2021JA029449
99. Yu, T., Wang, W., Ren, Z., Yue, J., Yue, X., & He, M. (2021). Middle‐low latitude neutral composition and temperature responses to the 20‐21 November 2003 superstorm from GUVI dayside limb measurements. Journal of Geophysical Research: Space Physics, 126, e2020JA028427. https://doi.org/10.1029/2020JA028427
98. Wang, Y., Chen, S., Xu, K., Yan, L., Yue, X., He, F., & Wei, Y. (2021). Ancient Auroral Records Compiled From Korean Historical Books. Journal of Geophysical Research: Space Physics, 126, e2020JA028763. https://doi.org/10.1029/2020JA028763
97. Yu, B., Scott, C., Xue, X., Yue, X., Chi, Y., Dou, X., & Lockwood, M. (2021). A Signature of 27 day Solar Rotation in the Concentration of Metallic Ions within the Terrestrial Ionosphere. The Astrophysical Journal, 916, 106. https://doi.org/10.3847/1538-4357/ac0886
96. Yu, B., Scott, C., Xue, X., Yue, X., & Dou, X. (2021). Using GNSS radio occultation data to derive critical frequencies of the ionospheric sporadic E layer in real time. GPS Solutions, 25. https://doi.org/10.1007/s10291-020-01050-6
95. Yu, B., Xue, X., Scott, C., Wu, J., Yue, X., Wuhu, F., et al. (2021). Interhemispheric transport of metallic ions within ionospheric sporadic E layers by the lower thermospheric meridional circulation. Atmospheric Chemistry and Physics, 21, 4219-4230. https://doi.org/10.5194/acp-21-4219-2021
94. Zhang, N., Li, M., Zhao, B., Zeng, L., Yue, X., Hao, H., et al. (2021). A Detection Performance Analysis of Sanya Incoherent Scatter Radar Tristatic System. Radio Science, 56. https://doi.org/10.1029/2020RS007144
93. Wang, Y., Chen, S., Xu, K., Yan, L., Yue, X., He, F., & Wei, Y. (2021). Ancient auroral records compiled from Korean historical books. Journal of Geophysical Research: Space Physics, 126, e2020JA028763. https://doi.org/10.1029/2020JA028763
92. 梁宇, 赵必强, 郝红连,丁锋,曾令旗,乐新安,宁百齐(2020). 磁化等离子体非相干散射理论谱中的共振线研究. 地球物理学报, 63(12), 4291-4299. https://doi.org/10.6038/cjg2020O0321
91. Yu, B., Scott, C. J., Xue, X., Yue, X., & Dou, X. (2020). Derivation of global ionospheric Sporadic E critical frequency (foEs) data from the amplitude variations in GPS/GNSS radio occultations. Royal Society Open Science,7, 200320. http://doi.org/10.1098/rsos.200320
90. Zhong, J., Lei, J., & Yue, X. (2020). Comment on “Choi et al. Correlation between Ionospheric TEC and the DCB Stability of GNSS Receivers from 2014 to 2016. Remote Sensing, 2019, 11, 2657”, Remote Sensing, 12, no. 21: 3496. https://doi.org/10.3390/rs12213496
89. Sun, W., Ning, B., Hu, L., Yue, X., Zhao, X., Lan, J., et al. (2020). The evolution of complex Es observed by multi‐instruments over low‐latitude China. Journal of Geophysical Research: Space Physics, 125, e2019JA027656. https://doi.org/10.1029/2019JA027656
88. Yu, B., Scott, C.J., Xue, X., Yue, X., Dou, X. (2021), Using GNSS radio occultation data to derive critical frequencies of the ionospheric sporadic E layer in real time. GPS Solutions, 25, 14. https://doi.org/10.1007/s10291-020-01050-6
87. Ho, S.,Anthes, R. A., Ao, C. O., Healy, S., Horanyi, A., Hunt, D., Mannucci, A. J., Pedatella, N., Randel, W. J., Simmons, A., Steiner, A., Xie, F., Yue, X., & Zeng, Z. (2021). The COSMIC/FORMOSAT-3 Radio Occultation Mission after 12 Years: Accomplishments, Remaining Challenges, and Potential Impacts of COSMIC-2. Bulletin of the American Meteorological Society, 101, 7. https://doi.org/10.1175/BAMS-D-18-0290.1
86. Wu, K., Xu, J., Yue, X., et al. (2020). Equatorial plasma bubbles developing around sunrise observed by an all-sky imager and global navigation satellite system network during storm time. Annales Geophysicae, 38, 163-177.
85. 梁宇, 赵必强, 乐新安,丁锋, 曾令旗, 郝红连, 宁百齐, 万卫星 (2020). 碰撞非相干散射理论谱宏观法和微观法的比较研究. 地球物理学报, 63(02), 387-393.
84. Yu, T., Ren, Z., Yu, Y., Yue, X., Zhou, X., & Wan, W. (2020). Comparison of reference heights of O/N2 and ∑O/N2 based on GUVI dayside limb measurement. Space Weather, 18, e2019SW002391. https://doi.org/10.1029/2019SW002391.
83. Wei, Y., Zhong, J., Hui, H., Shi, Q., Cui, J., He, H., Zhang, H., Yao, Z., Yue, X., et al. (2020). Implantation of Earth's atmospheric ions into the nearside and farside lunar soil: Implications to geodynamo evolution. Geophysical Research Letters, 47, e2019GL086208. https://doi.org/10.1029/2019GL086208
82. 易娟, 顾旭东, 李志鹏, 林仁桐, 蔡毅徽, 陈隆, 倪彬彬, 乐新安(2019). 基于LWPC和IRI模型的NWC台站信号传播幅度建模分析. 地球物理学报, 62(09), 3223-3234.
81. Zhong, J., Lei, J., Yue, X., Luan, X., & Dou, X. (2019). Middle‐latitudinal band structure observed in the nighttime ionosphere. Journal of Geophysical Research: Space Physics, 124, 5857– 5873. https://doi.org/10.1029/2018JA026059.
80. Zhong, J., Lei, J., Yue, X., Wang, W., Burns, A. G., Luan, X., & Dou, X. (2019). Empirical orthogonal function analysis and modeling of the topside ionospheric and plasmaspheric TECs. Journal of Geophysical Research: Space Physics, 124, 3681– 3698. https://doi.org/10.1029/2019JA026691.
79. Yu, B., Xue, X., Yue, X., Yang, C., Yu, C., Dou, X., Ning, B., & Hu, L. (2019). The global climatology of the intensity of ionospheric sporadic E layer. Atmospheric Chemistry and Physics, 19, 4139-4151.
78. Yu, T., Ren, Z., Yue, X., Yu, Y., & Wan, W. (2019). Comparison of thermospheric density between GUVI dayside limb data and CHAMP satellite observations: Based on empirical model. Journal of Geophysical Research: Space Physics, 124, 2165– 2177. https://doi.org/10.1029/2018JA026229.
77. Zheng, Z., Lei, J., Yue, X., Zhang, X., & He, F. (2019), Development of a 3-D plasmapause model with a back-propagation neural network. Space Weather, 17. https://doi.org/10.1029/2019SW002360.
76. Zhao, B., Yang, C., Cai, Y., Jin, Y., Liang, Y., Ding, F., Yue, X., & Wan, W. (2019). East‐west difference in the ionospheric response of the March 1989 great magnetic storm throughout East Asian region. Journal of Geophysical Research: Space Physics, 124, 9364–9380. https://doi.org/10.1029/2019JA027108.
75. Zeng, X., Xue, X., Yue, X., Jia, M., Yu, B., Wu, J., & Yu, C. (2018). Global Statistical Study of Ionospheric Waves Based on COSMIC GPS Radio Occultation Data. Chinese Physics Letters, 35(10), 109401.
74. Jiang, J., Wan, W., Ren, Z., & Yue, X. (2018). Asymmetric DE3 causes WN3 in the ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 173, 14-22.
73. He, F., Zhang, X.-X., Wang, W., Pu, Z.-Y., Zong, Q.-G., Yao, Z., Wei, Y., Ren, Z., Yue, X., Liu, L., & Wan, W. (2019). Evolution of the subauroral polarization stream oscillations during the severe geomagnetic storm on 20 November 2003. Geophysical Research Letters, 46, 599-607. https://doi.org/10.1029/2018GL081446
72. Hsu, C.‐T., Matsuo, T., Yue, X., Fang, T.‐W., Fuller‐Rowell, T., Ide, K., & Liu, J.‐Y. (2018). Assessment of the impact of FORMOSAT‐7/COSMIC‐2 GNSS RO observations on midlatitude and low‐latitude ionosphere specification: Observing system simulation experiments using Ensemble Square Root Filter. Journal of Geophysical Research: Space Physics, 123, 2296–2314. https://doi.org/10.1002/2017JA025109
71. Liu, H., Ding, F., Yue, X., Zhao, B., Song, Q., Wan, W., et al. (2018). Depletion and traveling ionospheric disturbances generated by two launches of China's Long March 4B rocket. Journal of Geophysical Research: Space Physics, 123, 10,319–10,330. https://doi.org/10.1029/2018JA026096
70. Yu, T., Miyoshi, Y., Xia, C., Zuo, X., Yan, X., Yang, N., Sun, Y., Yue, X., Mao, T. (2018). Solar dependence of equatorial F region irregularities observed by COSMIC radio occultations. Journal of Geophysical Research: Space Physics, 123, 9775–9787. https://doi.org/10.1029/2018JA025936
69. He, F., Zhang, X. X., Wang, W., Liu, L., Ren, Z., Yue, X., et al. (2018). Large‐scale structure of subauroral polarization streams during the main phase of a severe geomagnetic storm. Journal of Geophysical Research: Space Physics, 123, 2964–2973. https://doi.org/10.1002/2018JA025234
68. Lei, J., Huang, F., Chen, X., Zhong, J., Ren, D., Wang, W., Yue, X., et al. (2018). Was magnetic storm the only driver of the long‐duration enhancements of daytime total electron content in the Asian‐Australian sector between 7 and 12 September 2017? Journal of Geophysical Research: Space Physics, 123, 3217–3232. https://doi.org/10.1029/2017JA025166
67. Sun, W., Ning, B., Yue, X., Li, G., Hu, L., Chang, S., et al. (2018). Strong sporadic E occurrence detected by ground‐based GNSS. Journal of Geophysical Research: Space Physics, 123, 3050–3062. https://doi.org/10.1002/2017JA025133
66. Zhou, X., Wan, W., Yu, Y., Ning, B., Hu, L., & Yue, X. (2018). New approach to estimate tidal climatology from ground‐ and space‐based observations. Journal of Geophysical Research: Space Physics, 123, 5087–5101. https://doi.org/10.1029/2017JA024967
65. 魏勇, 戎昭金, 钟俊,柴立晖, 乐新安, 刘立波, 于晟, 朱日祥, 万卫星 (2017). 比较行星空间物理. 地球科学进展, 32(1), 15-20. https://doi.org/10. 11867/ j. issn. 1001-8166. 2017. 01. 0015
64. Xu, G., X. Yue, W. Zhang, & X. Wan (2017). Assessment of Atmospheric Wet Profiles Obtained from COSMIC Radio Occultation Observations over China. Atmosphere, 8(11), 208. https://doi.org/10.3390/atmos8110208
63. Wei, Y., X. Yue, Z. Rong, Y. Pan, W. Wan, & R. Zhu (2017), A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. https://doi.org/10.26464/epp2017009
62. Sheng C., Y. Deng, Y. Lu, andX. Yue (2017). Dependence of Pedersen conductance in the E and F regions and their ratio on the solar and geomagnetic activities.Space Weather,15, 484-494. https://doi.org/10.1002/2016SW001486
61. Zhong, J., J. Lei, W. Wang, A. G. Burns, X. Yue, & X. Dou (2017), Longitudinal variations of topside ionospheric and plasmaspheric TEC. Journal of Geophysical Research: Space Physics, 122, 6737-6760. https://doi.org/10.1002/2017JA024191
60. Yu, X., X. Yue, W. Zhen, J. Xu, D. Liu, & S. Guo (2017). On the occurrence of F-region irregularities over Haikou retrieved from COSMIC GPS radio occultation and ground-based ionospheric scintillation monitor observations: occurrence of F-region irregularities. Radio Science, 52, 34–48. https://doi.org/10.1002/2016RS006014
59. Yang, C., B. Zhao, J. Zhu, X. Yue, & W. Wan (2017). An investigation of ionospheric upper transition height variations at low and equatorial latitudes deduced from combined COSMIC and C/NOFS measurements. Advance in Space Research, 60(8), 1617-1628. https://doi.org/10.1016/j.asr.2016.11.024
58. She, C., W. Wan, X. Yue, B. Xiong, Y. Yu, F. Ding, & B. Zhao (2017). Global ionospheric electron density estimation based on multisource TEC data assimilation. GPS Solutions, 21(3), 1125-1137. https://doi.org/10.1007/s10291-016-0580-7
57. Xue, X., G. Li. X. Dou, X. Yue, G. Yang, J. Chen, T. Chen, B. Ning, J. Wang, G. Wang, & W. Wan (2017). An overturning-like thermospheric Na layer and its relevance to Ionospheric field aligned irregularity and sporadic E. Journal of Atmospheric and Solar-Terrestrial Physics, 162, 151-161. https://doi.org/10.1016/j.jastp.2016.12.006
56. Su, F., W. Wang, A. G. Burns, X. Yue,F. Zhu, & J. Lin (2016).Statistical behavior of the longitudinal variations of daytime electron density in the topside ionosphere at middle latitudes.J. Geophys. Res. Space Physics,121, 11,560–11,573. https://doi.org/10.1002/2016JA023029
55. Lei, J., J. Zhong, T. Mao, L. Hu, T. Yu, X. Luan, X. Dou, E. Sutton, X. Yue, J. Lin, I. S. Batista (2016), Contrasting behavior of the F2 peak and the topside ionosphere in response to the 2 October 2013 geomagnetic storm, J. Geophys. Res. Space Physics, 121, 10,549–10,563, https://doi.org/10.1002/2016JA022959
54. Mao, T., L. Sun, G. Yang, X. Yue, et al (2016). First ionospheric radio occultation measurements from GNSS Occultation Sounder on the Chinese Feng Yun 3C satellite, IEEE Trans. Geosci. Remote Sens., 54(9), 5044-5053, https://doi.org/10.1109/TGRS.2016.2546978
53. Zhong, J., J. Lei, X. Yue, and X. Dou (2016), Determination of Differential Code Bias of GNSS Receiver Onboard Low Earth Orbit Satellite, IEEE Trans. Geosci. Remote Sens., 54(8), 4896-4905, https://doi.org/ 10.1109/TGRS.2016.2552542
52. Zhong, J., W. Wang, X. Yue, A. G. Burns, X. Dou, and J. Lei (2016), Long-duration depletion in the topside ionospheric total electron content during the recovery phase of the March 2015 strong storm, J. Geophys. Res. Space Physics, 121, 4733–4747 , https://doi.org/10.1002/2016JA022469
51. Liu, J.,W. Wang, A. Burns, X. Yue, S. Zhang, Y. Zhang, and C. Huang , 2016: Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm, J. Geophys. Res. Space Physics, 121, 727–744, https://doi.org/10.1002/2015JA021832
50. 徐桂荣, 乐新安, 张文刚, 万霞, 冯光柳 (2016). COSMIC掩星资料反演青藏高原大气廓线与探空观测的对比分析. 暴雨灾害,4:315-325.
49. Su, F., W. Wang, A. G. Burns, X. Yue, and F. Zhu (2015), The correlation between electron temperature and density in the topside ionosphere during 2006–2009, J. Geophys. Res. Space Physics, 120, 10,724–10,739, https://doi.org/10.1002/2015JA021303
48. Pedatella, N. M., X. Yue, and W. S. Schreiner (2015), Comparison between GPS radio occultation electron densities and in situ satellite observations, Radio Sci., 50, 518–525. https://doi.org/10.1002/2015RS005677
47. Pedatella, N. M., X. Yue, and W. S. Schreiner (2015), An improved inversion for FORMOSAT-3/COSMIC ionosphere electron density profiles, J. Geophys. Res. Space Physics, 120, 8942–8953, https://doi.org/10.1002/2015JA021704.
46. Burns, A. G., S. C. Solomon, W. Wang, L. Qian, Y. Zhang, L. J. Paxton, X. Yue, J. P. Thayer, and H. L. Liu (2015), Explaining solar cycle effects on composition as it relates to the winter anomaly, J. Geophys. Res., 120, 5890–5898, doi:10.1002/2015JA021220.
45. Sun, L., J. Xu, W. Wang, X. Yue, W. Yuan, B. Ning, D. Zhang, and F. C. de Meneses (2015), Mesoscale field-aligned irregularity structures (FAIs) of airglow associated with medium-scale traveling ionospheric disturbances (MSTIDs), J. Geophys. Res. Space Physics, 120,9839-9858, doi:10.1002/2014JA020944.
44. Zhong, J., J. Lei, X. Dou, and X. Yue (2015), Assessment of vertical TEC mapping functions for space-based GNSS observations, GPS Solut., doi:10.1007/s10291-015-0444-6.
43. Zhong, J., J. Lei, X. Dou, and X. Yue (2015), Is the long-term variation of the estimated GPS differential code biases associated with ionospheric variability?, GPS Solut., doi:10.1007/s10291-015-0437-5.
42. Lin, J., and X. Yue (2015), Estimation and analysis of GPS satellite DCB based on LEO observations, GPS Solut., doi:10.1007/s10291-014-0433-1.
41. Luan, X., W. Wang, X. Dou, A. Burns, and X. Yue (2015), Longitudinal variations of the nighttime Elayer electron density in the auroral zone, J. Geophys. Res., 120, 825–833, doi:10.1002/2014JA020610.
40. Yu, X., C. She, W. Zhen, N. Bruno, D. Liu, X. Yue, M. Ou, and J. Xu, 2015: Ionospheric correction based on ingestion of Global Ionospheric Maps into the NeQuick 2 model. The Scientific World Journal, Article ID 376702, 11 pages, doi:10.1155/2015/376702.
39. Chen, Y., Wang, W., Burns, A. G., Liu, S., Gong, J., Yue, X., Jiang, G. and Coster, A. (2015), Ionospheric response to CIR-induced recurrent geomagnetic activity during the declining phase of solar cycle 23. J. Geophys. Res., 120: 1394–1418. doi: 10.1002/2014JA020657.
38. Zhao, B., J. Zhu, B. Xiong, X. Yue, M. Zhang, M. Wang, and W. Wan (2015), An empirical model of the occurrence of an additional layer in the ionosphere from the occultation technique: Preliminary results, J. Geophys. Res., 119, 10,204–10,218, doi:10.1002/2014JA020220.
37. Lin, J., X. Yue, Z. Zeng, Y. Lou, X. Shen, Y. Wu, W. S. Schreiner, and Y.-H. Kuo (2014), Empirical orthogonal function analysis and modeling of the ionospheric peak height during the years 2002–2011, J. Geophys. Res., 119, doi:10.1002/2013JA019626.
36. Lei, J., W. Wang, A. G. Burns, X. Yue, X. Dou, X. Luan, S. C. Solomon, and Y. C.-M. Liu (2014), New aspects of the ionospheric response to the October 2003 superstorms from multiple-satellite observations, J. Geophys. Res., 119, 2298–2317, doi:10.1002/2013JA019575.
35. Sheng, C., Y. Deng, X. Yue, and Y. Huang, 2014: Height-integrated Pedersen conductivity in both E and F regions from COSMIC observations. Journal of Atmospheric and Solar-Terrestrial Physics (2014), 115-116: 79-86, http://dx.doi.org/10.1016/j.jastp.2013.12.013.
34. Li, G., B. Ning, W. Wan, I. M. Reid, L. Hu, X. Yue, J. P. Younger, and B. K. Dolman (2014), Observational evidence of high-altitude meteor trail from radar interferometer, Geophys. Res. Lett.,41, doi:10.1002/2014GL061478.
33. Burns, A. G., W. Wang, L. Qian, S. C. Solomon, Y. Zhang, L. J. Paxton, and X. Yue (2014), On the solar cycle variation of the winter anomaly, J. Geophys. Res., 119, doi:10.1002/2013JA019552.
32. Sun, L., B. Zhao, X. Yue, T. Mao (2014), Comparison between ionospheric character parameters retrieved from FORMOSAT3 measurement and ionosonde observation over China. Chinese Journal Geophysics, 57(11): 3625-3632,doi: 10.6038/cjg20141116. [孙凌峰,赵必强,乐新安,毛田(2014),中国区域电离层垂测仪探测参量与COSMIC掩星反演结果比较研究,地球物理学报,57(11),3625-3632.]
31. Ho, S.-P., X. Yue, Z. Zeng, A. Chi, C.-Y. Huang, E. R. Kursinski, and Y.-H. Kuo (2013), Applications of COSMIC Radio Occultation Data from the Troposphere to Ionosphere and Potential Impacts of COSMIC-2 Data, Bulletin of the American Meteorological Society, 95, ES18–ES22, doi: 10.1175/BAMS-D-13-00035.1.
30. Zhao, B., M. Wang, Y. Wang, Z. Ren, X. Yue, J. Zhu, W. Wan, B. Ning, J. Liu, and B. Xiong (2013), East-west differences in F-region electron density at midlatitude: Evidence from the Far East region, J. Geophys. Res., 118, 542-553, doi:10.1029/2012JA018235.
29. Liu, L., H. Le, Y. Chen, M. He, W. Wan, and X. Yue, 2011: Features of the middle- and low-latitude ionosphere during solar minimum as revealed from COSMIC radio occultation measurements. J. Geophys. Res., 116, A09307, doi:10.1029/2011JA016691.
28. Zhao, B., W. Wan, X. Yue, L. Liu, Z. Ren, M. He, and J. Liu, 2011: Global characteristics of occurrence of an additional layer in the ionosphere observed by COSMIC/ FORMOSAT-3. Geophys. Res. Lett., 38, L02101, doi:10.1029/2010GL045744.
27. Li, G., B. Ning, M. A. Abdu, X. Yue, L. Liu, W. Wan, and L. Hu, 2011: On the occurrence of postmidnight equatorial F region irregularities during the June solstice. J. Geophys. Res., 116, A04318, doi:10.1029/2010JA016056.
26. Zhao, B., W. Wan, B. Reinisch, X. Yue, H. Le, J. Liu, and B. Xiong, 2011: Features of the F3 layer in the low-latitude ionosphere at sunset. J. Geophys. Res., 116, A01313, doi:10.1029/2010JA016111.
25. Lei, J., X. Yue, and W. S. Schreiner, 2010: Comment on “A new aspect of ionospheric E region electron density morphology” by Yen-Hsyang Chu, Kong-Hong Wu, and Ching-Lun Su. J. Geophys. Res., 115, A07313, doi:10.1029/2009JA015234.
24. Ding, F., W. Wan, B. Ning, L. Liu, H. Le, G. Xu, M. Wang, G. Li, Y. Chen, Z. Ren, B. Xiong, L. Hu, X. Yue, B. Zhao, F. Li, and M. Yang (2010), GPS TEC response to the 22 July 2009 total solar eclipse in East Asia, J. Geophys. Res., 115, A07308, doi:10.1029/2009JA015113.
23. Liu, L., M. He, X. Yue, B. Ning, and W. Wan (2010), Ionosphere around equinoxes during low solar activity, J. Geophys. Res., 115, A09307, doi:10.1029/2010JA015318.
22. Liu, L., W. Wan, B. Ning, M. Zhang, M. He, and X. Yue (2010), Longitudinal behaviors of the IRI-B parameters of the equatorial electron density profiles retrieved from FORMOSAT-3/COSMIC radio occultation measurements, Adv. Space Res., 46, 1064-1069, doi:10.1016/j.asr.2010.06.005.
21. Wan, W., J. Xiong, Z. Ren, L. Liu, M. L. Zhang, F. Ding, B. Ning, B. Zhao, and X. Yue (2010), Correlation between the ionospheric WN4 signature and the upper atmospheric DE3 tide, J. Geophys. Res., 115, A11303, doi:10.1029/2010JA015527.
20. Wen, J., W. Wan, F. Ding, X. Yue, C. She, and L. Liu (2010), Experimental observation and statistical analysis of the vertical TEC mapping function, Chinese J. Geophys., 53 (1), 22-29, doi:10.3969/j.issn.0001-5733.2010.01.003. [温晋,万卫星,丁峰,乐新安,佘承丽,刘立波(2010),电离层垂直TEC映射函数的实验观测与统计特性,地球物理学报,53(1),22-29.]
19. Li, G., B. Ning, L. Hu, L. Liu, X. Yue, et al. (2010), Longitudinal development of low-latitude ionospheric irregularities during the geomagnetic storms of July 2004, J. Geophys. Res., 115, A04304, doi:10.1029/2009JA014830.
18. 周旭,万卫星,赵必强,乐新安,任志鹏(2010),基于CHAMP卫星观测数据对热层大气密度的经验正交分析,空间科学学报,30(3),228-234.
17. Ren, Z., W. Wan, L. Liu, R. A. Heelis, B. Zhao, Y. Wei, and X. Yue (2009), Influences of geomagnetic fields on longitudinal variations of vertical plasma drifts in the presunset equatorial topside ionosphere, J. Geophys. Res., 114, A03305, doi:10.1029/2008JA013675.
16. Le, H., L. Liu, X. Yue, and W. Wan (2009), The ionospheric behavior in conjugate hemispheres during the 3 October 2005 solar eclipse, Ann. Geophys., 27, 179 – 184.
15. Le, H., L. Liu, X. Yue, W. Wan, and B. Ning (2009), Latitudinal dependence of the ionospheric response to solar eclipses, J. Geophys. Res., 114, A07308, doi:10.1029/2009JA014072.
14. Chen, Y., L. Liu, W. Wan, X. Yue, and S.-Y. Su (2009), Solar activity dependence of the topside ionosphere at low latitudes, J. Geophys. Res., 114, A08306, doi:10.1029/2008JA013957.
13. He, M., L. Liu, W. Wan, B. Ning, B. Zhao, J. Wen, X. Yue, and H. Le (2009), A study of the Weddell Sea Anomaly observed by FORMOSAT-3/COSMIC, J. Geophys. Res., 114, A12309, doi:10.1029/2009JA014175.
12. Laštovička, J., X. Yue, and W.Wan (2008), Long-term trends in foF2: Their estimating and origin, Ann. Geophys., 26, 593-598.
11. Le, H., L. Liu, X. Yue, and W. Wan (2008), The ionospheric responses to the 11 August 1999 solar eclipse: observations and modeling, Ann. Geophys., 26, 107-116.
10. Mao, T., W. Wan, X. Yue, L. Sun, and B. Zhao (2008), An empirical orthogonal function model of total electron content over China, Radio Sci., 43, RS2009, doi:10.1029/2007RS003629.
9. Li, G., B. Ning, L. Liu, B. Zhao, X. Yue, S.-Y. Su, and S. Venkatraman (2008), Correlative study of plasma bubbles, evening equatorial ionization anomaly, and equatorial prereversal E×B drifts at solar maximum, Radio Sci., 43, RS4005, doi:10.1029/2007RS003760.
8. Ren, Z., W. Wan, L. Liu, B. Zhao, Y. Wei, X. Yue, and R. A. Heelis (2008), Longitudinal variations of electron temperature and total ion density in the sunset equatorial topside ionosphere, Geophys. Res. Lett., 35, L05108, doi:10.1029/2007GL032998.
7. Le, H., L. Liu, X. Yue, and W. Wan (2008), The midlatitude F2 layer during solar eclipses: Observations and modeling, J. Geophys. Res., 113, A08309, doi:10.1029/2007JA013012.
6. Yu, X., W. Wan, L. Liu, X. Yue, and G. Xu (2007), A sudy of correlation distance of the day-to-day variability of F2-layer peak electron density over Europe, Chinese J. Geophys., 50(5), 1283-1288. [於晓,万卫星,刘立波,乐新安,徐贵荣(2007),欧洲地区电离层峰值电子密度逐日变化的相关距离研究,地球物理学报,50(5), 1283-1288.]
5. Liu, L., W. Wan, X. Yue, B. Zhao B. Ning, and M. Zhang (2007), The dependence of plasma density in the topside ionosphere on the solar activity level, Ann. Geophys., 25, 1337-1343.
4. Liu, L., B. Zhao, W. Wan, S. Venkatraman, M. Zhang, and X. Yue (2007), Yearly variations of global plasma densities in the topside ionosphere at middle and low latitudes, J. Geophys. Res., 112, A07303, doi:10.1029/2007JA012283.
3. Le, H., L. Liu, B. Chen, J. Liu, X. Yue, and W. Wan (2007), Modeling the responses of the middle latitude ionosphere to solar flares, J. Atoms. Solar-Terres. Phys., 69, 1587-1598.
2. Wei, Y., M. Hong, W. Wan, A. Du, J. Lei, B. Zhao, W. Wang, Z. Ren, and X. Yue (2007), Unusually Long Lasting Impulsive Penetration of IEF to Equatorial Ionosphere under Oscillating IMF Bz, Geophys. Res. Lett., 35, L02102, doi:10.1029/2007GL032305.
1. Zhao, B., W. Wan, L. Liu, X. Yue, and S. Venkatraman (2005), Statistical characteristics of the total ion density in the topside ionosphere during the period 1996–2004 using empirical orthogonal function (EOF) analysis, Ann. Geophys., 23, 3615-3631.