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Studying seismic wavefields in the Earth’s interior requires an accurate calculation of wave propagation
using accurate and efficient numerical techniques. In this paper, we present an alternative method
for accurately and efficiently modeling seismic wavefields using a convolutional generalized orthogonal
polynomial differentiator. Our approach uses optimization and truncation to form a localized operator.
This preserves the fine structure of the wavefield in complex media and avoids non-causal interaction
when parameter discontinuities are present in the medium. We demonstrate this approach for scalar
wavefield modeling in heterogeneous media and conclude that the method could be readily extended
to elastic wavefield calculations. Our numerical results indicate that this method can suppress numerical
dispersion and allow for the study of wavefields in heterogeneous structures. The results hold promise
not only for future seismic studies, but also for any field that requires high-precision numerical solution
of partial differential equation with variable coefficients.

Crown Copyright © 2010 Published by Elsevier B.V. All rights reserved.
1. Introduction

Seismic waves are a powerful tool when exploring the Earth’s
interior. Such problems often involve multiple-scale heterogeneous
structures, hence accurate and efficient methods for computing
seismic wavefields are required when dealing with seismic wave
propagation, seismic wave inversion, or high-resolution seismic
wave imaging. However, it is difficult to obtain such accurate and
efficient methods for computing or simulating seismic wavefields
in highly heterogeneous media because this problem involves solv-
ing partial differential equations (wave equations) with variable
coefficients. In general, numerical schemes for solving wave equa-
tions include direct methods and intermediate methods. In this
paper, only numerical schemes for direct methods to treat the
above-mentioned problem will be involved.

Several direct methods have been previously proposed for mod-
eling seismic wavefields. These include the higher-order finite dif-
ference method [1,2], the finite element method [3], the spectral
element method [4,5], the staggered grid Fourier pseudospectral
method [6–8], the optimized FD method [9–12] and the convolu-
tional differentiator method [13–17]. Each of these methods has
its merits and drawbacks. For example, the finite element and
spectral element methods have high calculation accuracy but are
not very efficient and require substantial computational resources.
The conventional higher-order finite difference method (HOFD) on
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regular grids is more efficient but suffers from poor numerical pre-
cision, especially in the high-frequency domain. Also, it is difficult
to suppress numerical dispersion using the conventional HOFD ap-
proach [18]. The Fourier pseudospectral method is accurate and ef-
ficient for smooth functions (e.g., problems associated with smooth
heterogeneous media), but a global operator is used when tak-
ing the Fourier transform which can lead to non-local interactions
between globally-distant points. This is inconsistent with physical
phenomena where interactions occur through local wave motion.

Finite difference (FD) methods could yield improved local ac-
curacy with appropriate modification. For instance, optimally accu-
rate second-order time-domain finite difference operators for mod-
eling seismic waves [10,11] yield almost two orders of magnitude
greater accuracy than the conventional O (�z2,�t2) FD operator,
while requiring twice as much CPU time. To increase the local
accuracy of finite differences, a halfway staggered grid finite differ-
ence method has been used [6,12,17,19]. This approach improves
the calculation precision and the ability to suppress numerical dis-
persion, but the use of a staggered grid requires additional com-
putational overhead since derivatives must now be interpolated at
the actual grid positions. The interpolation can be circumvented,
as suggested by [9], by designing a grid system that compensates
for the shifting property of the differentiator.

Although the convolutional differentiator method is equivalent
to the finite difference method in substance, the tapered differen-
tiator does have some distinct advantages over both the high-order
finite difference method and the Fourier method. The convolutional
differentiator method can simulate both local and global wavefield
regimes in strongly heterogeneous media. It is also as efficient as
rights reserved.
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both the Fourier pseudospectral method and the low-order finite
difference method, and uses a shorter operator (e.g., a five-point
or nine-point operator). Holberg [9] investigated the design of con-
volutional operators for spatial differentiation in wave equation
computations, with an emphasis on limiting the computational ef-
fort. Mora [13] applied convolutional differentiators for derivatives
to elastic wave modeling, however, he did not give explicit expres-
sions for the differentiators. Etgen [14] used the same method and
explored wave propagation simulations in general anisotropic me-
dia.

Recently, an optimal and nearly analytic discrete method (ON-
ADM) has also been developed [20,21]. Although the method has
high calculation precision, its calculation efficiency still requires
improvement and we do not discuss the method further.

In this paper, we present an alternative method for accurately
and efficiently modeling seismic wavefields using a convolutional
generalized orthogonal polynomial differentiator (CGOPD). To im-
prove the calculation accuracy of the convolutional differentiator
method and avoid Gibbs and Runge phenomena, we substitute
the generalized orthogonal polynomial differentiator for the con-
ventional high-order FD differentiator and introduce a Gaussian
window function into the convolutional differentiator. Theoreti-
cally, the CGOPD (a short operator) is a localized operator that can
describe both the fine structure of wavefields in complex media
and avoid any non-causal interaction of the propagating wave-
fields when parameter discontinuities are present in the medium.
The operator is truncated for practical implementation. Nine-point
operators (optimized eighth-order operators) on regular grids are
used as a compromise between computational efficiency and ac-
curacy. Moreover, the CGOPD approach is computationally simpler
and more efficient than implicit convolutional differentiator ap-
proaches [13,14] because it is explicit. As an example, we apply the
convolutional differentiator to seismic scalar wavefield modeling
in heterogeneous media. Our numerical results indicate that the
CGOPD is suitable for large-scale numerical modeling since it ef-
fectively suppresses numerical dispersion by discretizing the wave
equation when coarse grids are used.

2. Basic theory and method

2.1. The convolutional differentiator expression of the scalar seismic
wave equation

Generally, the scalar wave equation with variable coefficients
for 2D arbitrarily heterogeneous media in the time domain can be
written as

1

v2

∂2u(x, y, t)

∂t2
= ∂2u(x, y, t)

∂x2
+ ∂2u(x, y, t)

∂ y2
+ f (x, y, t), (1)

where u is the scalar wavefield, v is the velocity of the wave, f is
the body force, x and y are Cartesian coordinates, and t is the time.
In the convolutional differentiator method, the spatial derivatives
of u in Eq. (1) can be written as

∂2u(x, y, t)

∂x2
= d1(x) ∗ [

d1(x) ∗ u(x, y, t)
]
, (2)

where ‘∗’ stands for convolution with respect to x and d1(x) is
the convolutional differentiator for the first-order derivative. Simi-
larly, d2(x) is the convolutional differentiator for the second-order
derivative. Therefore, Eq. (1) can be expressed as

∂2u(x, y, t)

∂t2
= v2(x, y, t)

{
d2(x) ∗ u(x, y, t) + d2(y) ∗ u(x, y, t)

}
+ f (x, y, t), (3)

where d2(x) = d1(x) ∗ d1(x).
2.2. The convolutional generalized orthogonal polynomial differentiator

We first present the generalized orthogonal polynomial differ-
entiator. The generalized orthogonal interpolation polynomial [22]
can be written as

ϕ(x) = C0 P0(x) +
n∑

j=1

C j P j(x), (4)

where the following values and recursion relationships apply:

P0 = 1,

P1(x) = (x − α1)P0(x),

P2(x) = (x − α2)P1(x) − β1 P0(x),

P3(x) = (x − α3)P2(x) − β2 P1(x),

...

P j+1(x) = (x − α j+1)P j(x) − β j P j−1(x),

α1 = 1

m

m∑
i=1

xi, α j+1 =
∑m

i=1 xi P 2
j (xi)∑m

i=1 P 2
j (xi)

,

β j =
∑m

i=1 xi P j(xi)P j−1(xi)∑m
i=1 P 2

j−1(xi)
,

C0 =
∑m

i=1 f (xi)P0(xi)∑m
i=1 P 2

0(xi)
, C j =

∑m
i=1 f (xi)P j(xi)∑m

i=1 P 2
j (xi)

.

In these expressions, m is the number of data points, n is the
order of the generalized orthogonal polynomial, and f (xi) is the
value of the function f (x) at point xi . The P0(x), . . . , P j+1(x) are
the system of generalized orthogonal polynomials used to con-
struct the convolutional differentiator.

From Eq. (4), the generalized orthogonal polynomial derivative
formula can be easily constructed as

ϕ′(x) = dϕ(x)

dx
= C1 +

n∑
j=2

C j P ′
j(x), (5)

where

P ′
j(x) = dP j(x)

dx
, and

P ′
1(x) = P0(x),

P ′
2(x) = P1(x) + (x − α2)P ′

1(x),

P ′
3(x) = P2(x) + (x − α3)P ′

2(x) − β2 P ′
1(x),

...

P ′
j+1(x) = P j(x) + (x − α j+1)P ′

j(x) − β j P ′
j−1(x).

The generalized orthogonal polynomial differentiator is then
written as

d

dx
= Cd

1 +
n∑

j=2

Cd
j P ′

j(x), (6)

where

Cd
j =

∑m
i=1 P j(xi)∑m
i=1 P 2

j (xi)
.

Similarly, the convolutional differentiator for the second-order
derivative can be written as
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Fig. 1. The dispersion relation for the CGOPD approach for the one-dimensional homogeneous wave equation. V 0 is the acoustic velocity, V is the phase velocity, G is the
inverse of the number of grids per highest wavelength (k�x/2π , where k = ω/V 0), and the numbers in the label frame stand for the length of the operator.
d2

dx2
=

n∑
j=2

Cd
j P ′′

j (x), (7)

where

P ′′
1(x) = d2 P1(x)

dx2
= 0,

P ′′
2(x) = 2P ′′

1(x),

P ′′
3(x) = 2P ′′

2(x) + 2(x − α3),

...

P ′′
j+1(x) = 2P ′

j(x) + (x − α j+1)P ′′
j (x) − β j P ′′′

j−1(x).

To discretize the differentiator, we let x = i�x. In the discrete
domain, Eqs. (6) and (7) can then be written as

d1(i�x) = Cd
1 +

n∑
j=2

Cd
j P ′

j(i�x) (8)

and

d2(i�x) =
n∑

j=2

Cd
j P ′′

j (i�x). (9)

Here i is the sampling index and �x is the sampling rate along
the x axis. For practical implementation, the differentiator has to
be truncated as a short operator, but doing so could lead to the
Gibbs phenomenon. On the other hand, the Runge phenomenon
caused by polynomial interpolation is very obvious. To avoid these
phenomena, we use a Gaussian window function for truncating the
differentiator:

w(n) = ce−an�x2
, |n| = 0,1,2, . . . ,mx, (10)

where mx is the one-side truncation length in sampling number,
c is a constant, and a (0.1 � a � 0.75) is an attenuation factor. For
wave equation modeling, the attenuation factor a is dependent on
the dominant frequency of wavefield. Generally, a ∝ 2π f0/v where
f0 is the dominant frequency of wavefield, v is the wave velocity.
A modified and practical convolutional differentiator can be de-
noted by

d̂1(i�x) =
{

(−1)id1(i�x)w(i), i = 1,2, . . . ,m,

−d̂1( j�x), i = 1,−2, . . . ,−m, j = −i,

d̂1(0�x) = 0. (11)

For the second-order derivative, the convolutional differentiator is
written as d̂2(i�x).
2.3. The discrete seismic modeling formula and its stability condition
and accuracy

For seismic modeling in the discrete domain, the solution of
seismic scalar wave equation (3) can be written as

u(m,n, t + �t) = 2u(m,n, t) − u(m,n, t − �t)

+ v2(m,n)�t2

[
�x

mx∑
i=−mx

d̂2(i�x)u(m − i,n, t)

+ �z
nz∑

j=−nz

d̂2( j�z)u(m,n − j, t) + f (m,n, t)

]
, (12)

where m and n are indices along the discrete x and z axes, �x, �z
and �t are sampling rates along the x, z and t axes, mx and nz
are the half differentiator lengths in sampling number along the
x and z axes, and d̂2(i�x) is the CGOPD operator. Here we apply
the second-order central finite difference method to the temporal
derivative. Note that in Eq. (12), the spatial derivative operator is
not based on a Taylor expansion.

It can be shown that the stability criteria of equation (12) for
2D homogeneous media is similar to that of the perfect Fourier
derivate [23], namely

�t � min(�x,�z)

v
. (13)

Similarly, for 2D heterogeneous media, the stability condition can
be written as

�t � min(�x,�z)

vmax
(1 + ε), (14)

where vmax is the maximum velocity of the medium and ε is a fi-
nite but relatively small number whose amplitude and sign depend
on the nature of the question.

Previous works generally evaluated the proposed computational
schemes by presenting theoretical derivations or by conducting
numerical tests for a homogeneous medium, using the numerical
dispersion of the phase velocity as the criterion for evaluating ac-
curacy. This approach is demonstrated in Fig. 1, which plots the
dispersion relation for the CGOPD method for the 1D homogeneous
wave equation. The error analysis is only for the first derivative
operators. In this plot, V 0 is the acoustic velocity, V is the phase
velocity, G is the inverse of the number of grids per highest wave-
length (k�x/2π , where k = ω/V 0), and the numbers in the label
frame of Fig. 1 denote the length of the operator. The plot of
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Fig. 2. Two-layered medium model; configuration and parameters.
the dispersion relation may be considered as the reference cri-
terion for designing the convolutional differentiator. From these
curves, it can be seen that the accuracy of the operator clearly
depends on its length. After comparing detailed synthetic testing,
the nine-point differentiator performs adequately. However, seis-
mologists typically focus on wave propagation in heterogeneous
models that approximate the actual Earth, which is highly hetero-
geneous. Therefore, we will evaluate the accuracy and performance
of Eq. (12) for the case of heterogeneous models in the next sec-
tion.

3. Numerical examples

Generally, the accuracy of numerical schemes is evaluated by
considering the numerical dispersion as a function of number of
grid points per wavelength. Even though the wavefield in a highly
heterogeneous medium is usually not known analytically, the over-
all performance of the algorithm can still be judged through nu-
merical results qualitatively. In this section, we give two numerical
examples for evaluating the performance of the CGOPD approach.
It is well known that the conventional FD method is one of the
most efficient numerical schemes for partial differential equation
with variable coefficients. The CGOPD approach and the conven-
tional FD method are equivalent in the computational efficiency
because the CGOPD approach is an optimized FD method in na-
ture. Therefore, we compare the CGOPD approach and the con-
ventional FD method only in the computational accuracy in this
section.
3.1. Seismic scalar wavefield in a two-layered medium with high
velocity contrast

Like other optimized high-order FD schemes, the CGOPD is
not based on a Taylor expansion. Aiming for a balance between
efficiency and accuracy, we chose nine-point explicit operators
(eighth-order operators) on regular grids. One might expect these
operators to have a slightly reduced accuracy but still be faster
than other operators (with an accuracy of approximately 3 grids
per highest wavelength). Ultimately, if the CGOPD approach has
only a slight advantage in accuracy compared to conventional
high-order HOFD (the FD scheme based on Taylor expansions),
then it is meaningless to adopt it.

We compared the numerical results found using CGOPD with
those from conventional high-order FD for a two-layered medium
with a high velocity contrast. The model consists of two different
wave velocity regions separated by a horizontal interface (Fig. 2).
The model parameters were a velocity of C1 = 1500 m/s for the
upper layer with the source, and a velocity of C2 = 3000 m/s for
the lower layer. The number of grid points was 241 × 241, the
model size was 2400 m × 2400 m, and the wave source was lo-
cated at (xs, zs) = (1200 m,1200 m). The spatial increments were
10 m and the time increment was 1 ms. The interface can be con-
sidered a velocity discontinuity since the velocity contrast is very
high. The source, a band-limited Ricker wavelet, is located in the
upper layer and has an amplitude spectrum peak at 30 Hz and a
high-frequency cut at 43 Hz.

Figs. 3A, 4B and 4C are wavefield snapshots at time marks of
200 ms, 300 ms and 400 ms generated by the CGOPD. The snap-
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Fig. 3. Snapshots of seismic wavefields in a two-layered medium model generated by CGOPD at times (A) 200 ms, (B) 300 ms and (C) 400 ms. Snapshots of seismic wavefields
in the same medium model generated by the eighth-order FD method at times (D) 200 ms, (E) 300 ms and (F) 400 ms.
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Fig. 4. Comparison of synthetic seismograms for a two-layered medium model generated by the CGOPD (A) and eighth-order FD (B).
shots in Figs. 3A, 3B and 3C clearly show that the wavefront of
the direct wave exhibits a semi-circular shape at the inner inter-
face. Other phases (e.g., the reflected and transmitted waves) are
also displayed clearly. The wavefronts are continuous and mend
the velocity discontinuity in the model. From these snapshots, it
can be seen that the wavefields simulated by CGOPD are very clear.
There is hardly any grid dispersion despite the fact that there are
only 3.5 grids or less per shortest wavelength at the high-cut fre-
quency.

Comparing wavefield snapshots generated by the CGOPD
(Figs. 3A, 3B and 3C) with the eighth-order FD (Figs. 3D, 3E and 3F,
respectively), one can see that there is hardly any evidence of
numerical dispersion in the CGOPD approach, whereas numeri-
cal dispersion is obviously present when using the eighth-order
FD method. A similar phenomenon also appears when compar-
ing the synthetic seismograms (Fig. 4A for the CGOPD and Fig. 4B
for the eighth-order FD). Note that the number of grid points (or
sampling interval) is consistent between the two methods. Al-
though the accuracy of the conventional HOFD can be improved
by heavy over-sampling along the spatial axes, more computa-
tional resources would naturally be required. Therefore, the CGOPD
is suitable for large-scale numerical modeling with coarse spatial
grids.

Based on these results, we conclude that the convolutional op-
erator designed here is accurate to about 3.5 grids or less per
shortest wavelength. Also, the CGOPD method effectively captures
the inner interface without any special treatment at the disconti-
nuity.



1856 X. Li et al. / Computer Physics Communications 181 (2010) 1850–1858
Fig. 5. Snapshot of seismic wavefields in a heterogeneous medium model generated by CGOPD. (A) Heterogeneous medium model; configuration and parameters. (B) Snapshot
of the wavefield generated by CGOPD at time 450 ms.
3.2. Seismic scalar wavefield in a strongly heterogeneous medium

We next consider the more complex case consisting of a low-
velocity and strongly heterogeneous layer embedded in a homoge-
neous host medium. The low-velocity layer has an average thick-
ness of 500 m, a mean velocity of C1 = 1500 m/s, and a velocity
perturbation generated by random numbers with a uniform dis-
tribution between ±30%. The velocity perturbation scale length is
taken to be the grid spacing (10 m). The host layer has a velocity
of c = 3000 m/s. The model is shown in Fig. 5A. The upper and
lower surfaces of the heterogeneous zone are curved interfaces,
and a seismic source simulated by a band-limited Ricker wavelet in
the embedded zone is located at (xs, zs) = (1235 m,1235 m). The
source amplitude spectrum peaks at 30 Hz and the high-cut fre-
quency is 43 Hz. The model is defined on a 2470 m × 2470 m grid
with a grid spacing of 10 m in both spatial directions. Note that
this model is defined by the strong contrast of velocities between
the two zones.

Fig. 5B shows a snapshot of the full wavefield at 450 ms. Note
that the seismic scalar waves from the interface, the curved in-
terfaces, and some details of the low-velocity and heterogeneously
curved zone are all clearly displayed. The snapshot also contains
the direct, reflected, transmitted, and scattered waves. Fig. 6A
presents the synthetic seismogram generated by the CGOPD in the
previous medium model, clearly displaying the seismic coda from
scattering. These results for a highly heterogeneous model have
negligible numerical dispersion, which are accurate to approxi-
mately 3.5 grids or less per shortest wavelength in space. Fig. 6B
shows the synthetic seismogram generated by the eighth-order FD
method in the same medium model, which has obvious numerical
dispersion (i.e. periodic oscillation waveforms after the head wave).
The CGOPD, therefore, can readily cope with the question of seis-
mic scattering and can simulate seismic waves in complicated ge-
ometries and highly heterogeneous media without any additional
treatment.

In terms of efficiency, the computational speed of the CGOPD is
very fast since the spatial derivative is a short explicit operator. For
the model considered above, modeling the wavefield for 450 time
steps only takes 60 seconds of CPU time running on a Core 2 Duo
2.5 GHz machine.
4. Conclusions

We have designed a convolutional differentiator using gener-
alized orthogonal polynomials that is explicit and computationally
simple and efficient. To obtain an optimal balance between compu-
tational efficiency and accuracy of the CGOPD approach, we chose
nine-point explicit operators (optimized eighth-order operators) on
regular grids. It is easier to implement the CGOPD scheme since
the corresponding operator is explicit. The nine-point CGOPD is a
localized operator that can describe the local properties of com-
plicated wavefields and avoid non-causal interaction of the propa-
gating wavefield when parameter discontinuities are present in the
medium. This approach is therefore suitable for large-scale numer-
ical modeling since it effectively suppresses numerical dispersion
by discretizing the wave equations when coarse grids are used.

In methodology, the conventional FD scheme is based on Tay-
lor expansions. In nature, the CGOPD approach is an optimized FD
method in which the spatial derivative operator is not based on a
Taylor expansion. The CGOPD operator can easily be designed by
the generalized orthogonal polynomial, truncating to the desired
length, and multiplying by the Gaussian window to avoid Gibbs
and Runge phenomena. It is simpler than the Taylor expansion ap-
proach which requires some tedious algebra. From the numerical
results (Figs. 3, 4 and 6), it can be seen that the CGOPD scheme is
superior to the conventional FD scheme in suppression of numer-
ical dispersion. Moreover, the CGOPD approach is computationally
simpler and more efficient than implicit convolutional differentia-
tor approaches [13,14] because it is explicit.

From the simulation results in this paper, it has been shown
that the CGOPD method can effectively capture the inner inter-
face without any special treatment at the discontinuity; there-
fore, it can simulate seismic waves in complicated geometries and
highly heterogeneous media without any additional treatment. The
CGOPD allows us to use a coarse grid, that is, fewer samples
per wavelength, to achieve the same accuracy in modeling waves
and is similar to that obtained by conventional FD schemes on
a finely-sampled grid. The results here hold promise not only for
future geophysical studies, but also for any field that requires high-
precision numerical solution of partial differential equation with
variable coefficients. Although the CGOPD method is only applied
to the 2D scalar wavefield calculation for highly heterogeneous
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Fig. 6. Synthetic seismograms for a heterogeneous medium model of Fig. 5A, generated by CGOPD (A) and eighth-order FD (B).
models in this paper, the method can be easily extended to 3D
elastic wavefield calculations. For 3D elastic wavefield calculations,
the computational efficiency and accuracy will be analyzed in a
later paper.
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