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Abstract – Zoned olivine grains are abundant in the late Mesozoic Shatuo gabbro (southern Taihang
Mountains, central North China Craton). Olivine cores are rich in MgO and NiO, rims are rich in
FeO and MnO, and both cores and rims have very low CaO contents. The cores invariably have a
high Mg no. (92–94), similar to olivine xenocrysts from Palaeozoic kimberlites in eastern China.
The compositional features of these olivines imply that they are xenocrysts rather than phenocrysts,
namely, disaggregates of mantle peridotites at the time of intrusion. The compositional similarity of
olivine cores to xenocrysts from Palaeozoic kimberlites suggests that the lithospheric mantle beneath
the central North China Craton is ancient and refractory in nature, and quite different from eastern
China, where the mantle is mainly composed of newly accreted materials resulting from large-scale
lithospheric removal and replacement. The contrasting features of the lithospheric mantle beneath the
eastern and central North China Craton imply that the large-scale lithospheric removal in Phanerozoic
times was mainly confined to the eastern North China Craton.
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1. Introduction

Mantle xenoliths in volcanic rocks provide snapshots
of the lithospheric mantle at the time of eruption,
and direct evidence for the nature of the mantle.
Thus, mantle xenoliths are of immense value in
deciphering the nature and evolution of the lithosphere
(Nixon, 1987; Pearson, Canil & Shirey, 2003). Mantle-
derived xenocrysts in volcanic rocks, such as garnet,
olivine, clinopyroxene and chromite, derived from
disaggregated mantle xenoliths, also bear information
about the protolith and can be used to extract inform-
ation about the chemical nature and processes of the
lithospheric mantle (Griffin et al. 1999; Scully, Canil
& Schulze, 2004; Zhang, 2005; Zhang et al. 2007),
especially in regions where mantle xenoliths are not
available. Here, we describe zoned olivine xenocrysts
that are widely distributed in a gabbroic intrusion
from the southern Taihang Mountains, north China,
and present detailed compositions of these olivine
xenocrysts. Further, we discuss the compositional
characteristics and evolution of the sub-continental
lithospheric mantle beneath the North China
Craton.

2. Geological setting and petrography

The North China Craton, with its Archaean to
early Proterozoic basement, is the largest and oldest
craton in China (Jahn et al. 1987; Liu et al. 1992).
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Geological and geophysical observations reveal that
the North China Craton is traversed by two large-
scale N–S-trending linear zones: the Tan-Lu Fault
in the east, and the Daxing’anling–Taihang gravity
lineament in the west (Ma, 1989; Menzies & Xu, 1998)
(Fig. 1). The Daxing’anling–Taihang gravity lineament
was traditionally regarded as the boundary between
the eastern and western parts of the North China
Craton. The regions to the west of the Daxing’anling–
Taihang gravity lineament are characterized by thick
crust (> 40 km) and lithosphere (> 100 km), large
negative Bouguer gravity anomalies and low heat
flow. In contrast, the regions to the east of the
Daxing’anling–Taihang gravity lineament have much
thinner crust (< 35 km) and lithosphere (60–80 km),
Bouguer gravity anomalies are weakly negative to
positive and heat flow is relatively high (Ma, 1989; Hu,
He & Wang, 2000; Chen et al. 2008). The North China
Craton can also be divided into three parts, according to
lithological and geochemical studies, and metamorphic
P–T–t paths of the basement rocks, namely the Eastern
and Western blocks and the Trans-North China Orogen
(also called the Central Zone) (Zhao et al. 2001)
(Fig. 1). The Eastern Block is composed of early to late
Archaean orthogneisses intruded by 2.5 Ga syntectonic
granitoids. The Western Block consists of Archaean
basement with overlying Archaean to Palaeoprotero-
zoic metasediments (Li et al. 2000; Zhao et al. 2000).
The Trans-North China Orogen is composed of late
Archaean amphibolites, granulites and greenstones
overlain by bimodal volcanic rocks and terrigenous
sedimentary rocks. It was generally considered that
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Figure 1. Simplified geological map showing the major tectonic units in eastern China and the location of the Shatuo gabbro; the
locations of Palaeozoic kimberlites (open squares) and Mesozoic (open triangles) and Cenozoic (open circles) xenolith-bearing basalts
are also marked. 1 – Mengyin kimberlites; 2 – Fuxian kimberlites; 3 – Junan basalts; 4 – Jiaozhou basalts; 5 – Qingdao basalts; 6 –
Penglai basalts; 7 – Qixia basalts; 8 – Changle basalts; 9 – Hebi basalts; 10 – Fansi basalts; 11 – Yangyuan basalts; 12 – Hanuoba
basalts. Note that the North China Craton is traversed by two large-scale N–S-trending linear zones, namely, the Tan-Lu fault zone
(TLFZ) to the east and the Daxinganling–Taihang gravity lineament (DTGL) to the west. Two shaded dashed lines outline the three-fold
tectonic division of the North China Craton (after Zhao et al. 2001). Inset shows location of the North China Craton relative to other
cratonic blocks and intervening fold belts.

the Eastern and Western blocks evolved independently
from late Archaean to early Palaeoproterozoic times
before colliding into a coherent craton along the Trans-
North China Orogen at c. 1.85 Ga (Zhao et al. 2000,
2001).

The southern Taihang Mountain is a part of the
Trans-North China Orogen of the North China Craton.
Mesozoic intrusive complexes are widely distributed
in this region, with a range of rock types including
gabbros, hornblende diorites, syenites and monzonites.
The gabbro outcrops are generally small (usually less
than 0.5 km2) and occur as knobs or xenoliths hosted
by hornblende diorites (Shanxi Bureau of Geology and
Mineral Resources, 1982). The samples in this study
were collected from the Shatuo gabbro in Huguan
county, Shanxi Province. Gabbroic samples are fresh,
dark grey and medium- to coarse-grained rocks, com-
posed of plagioclase (40–50 %), clinopyroxene (20 %),
olivine (5–10 %), biotite (10 %), amphibole (5 %) and
alkali feldspar (5 %). Accessory phases include zircon,
sphene, apatite and Fe–Ti oxides. Analyses of zircons
extracted from gabbro using a Cameca 1280 secondary
ion mass spectrometer yielded a concordant U–Pb age
of 128.4 ± 1.2 Ma (Ying et al. unpub. data). Olivines
are generally rounded and have varied grain size (from
< 1–8 mm). All olivine grains show compositional
zonation in backscattered electron images (BSE),
with darker Mg-rich cores and lighter Fe-rich rims
(Fig. 2).

3. Analytical methods

The mineral chemistry of olivine was obtained with
a JEOL Superprobe at the Institute of Geology and
Geophysics, Chinese Academy of Sciences. The
analyses were operated at 15 kv accelerating voltage,
10 nA beam current and 2 μm beam diameter. The
counting time varied between 10 and 30 seconds for
different elements. Natural mineral standards were
used for calibration.

4. Olivine chemistry

As shown in backscattered electron images, the olivine
grains exhibit apparent zonation and span a wide
compositional range (Table 1). The cores invariably
have higher MgO and NiO contents and lower FeO and
MnO contents than the rims, and the compositional
change towards the rims is gradual (Fig. 3). The Mg
nos of cores are generally higher than 91 and the
highest can reach to 94 (sample 02ST-9). The rims have
variable compositions, with Mg no. ranging from 79 to
89 (Table 1). The cores and the rims show comparable
and low CaO concentrations (< 0.1 wt %).

5. Discussion

5.a. Are zoned olivines phenocrysts or xenocrysts?

Both olivine phenocrysts and xenocrysts are common
in volcanic rocks (Hirano et al. 2004; Zhang et al.
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Figure 2. Backscattered electron images (BSE) of zoned olivine xenocrysts; traverse lines analysed by electron probe micro-analysis
are also shown. (a) SG03.1, (b) SG03.2, (c) SG02, (d) 02ST-5.

2004b; Zhang, 2005). Phenocrysts are genetically
related to the host magma and usually crystallized
in the magma chamber prior to magma eruption; in
contrast, no genetic relationship exists between the host
magma and xenocrysts, and the latter were considered
to be entrained in the host magma during the volcanic
eruption or magmatic intrusion.

It has been observed that olivines of magmatic
origin usually have higher CaO contents (> 0.2 %)
than those in mantle xenoliths (Gurenko, Hansteen &
Schmincke, 1996; Thompson & Gibson, 2000), though
some low-Ca olivine phenocrysts were found recently
in some subduction-related magmas, and such low-Ca
olivines were usually characterized by the presence of
melt inclusions (Kamenetsky et al. 2006; Elburg &
Kamenetsky, 2008). The olivine grains in this study
show very low CaO contents regardless of cores or rims
(Fig. 4); in addition, melt inclusions were not observed
in all olivine grains, so it can be ruled out that these
olivines are crystallizing phases of host magma, namely
phenocrysts. Moreover, a simple calculation shows that
the forsterite content of olivines in equilibrium with
the host magma should be no more than 91 (Fig. 5),
far lower than that of the olivine cores; therefore, these
olivines are disaggregated from mantle xenoliths rather
than magmatic phenocrysts. As a result, these olivine

xenocrysts can be used to constrain the nature of the
lithospheric mantle beneath that region at the time of
the gabbroic intrusion.

5.b. Formation of the zoned olivine xenocrysts

Olivine xenocrysts, which were almost neglected in
previous studies, have been widely observed recently
in the late Mesozoic and Cenozoic basalts from
both eastern and western parts of the North China
Craton, and all xenocrysts found invariably show
zoned texture (Pei et al. 2004; Tang, Zhang & Ying,
2004; Zhang et al. 2004b; Shao et al. 2005; Zhang,
2005). Because other mineral phases in the gabbros
are not zoned, the zonation texture induced by late-
stage magmatic fluid infiltration or post-emplacement
processes can be ruled out, and we attribute the
chemical zonation texture in olivines to re-equilibration
through diffusional exchange between the olivine and
host magma (Maaløe & Hansen, 1982; Nakamura,
1995; Larsen & Pedersen, 2000; Klugel, 2001). When
olivine crystals are entrapped in high-temperature
basaltic magma, the chemical disequilibrium between
olivine and host magma will cause a reaction and
chemical exchange, and the degree of re-equilibration
depends on the size of the olivine and the duration
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Table 1. Representative analyses of olivine xenocrysts from Mesozoic Shatuo gabbros

Olivine μm SiO2 Cr2O3 FeO MnO MgO CaO NiO Mg no.

Line analyses
A 39.42 0.00 18.94 0.48 40.98 0.03 0.25 79.6
50 35.58 0.11 18.19 0.36 37.39 0.15 0.32 78.7

100 39.71 0.00 18.54 0.38 41.57 0.05 0.33 80.1
150 39.63 0.02 17.69 0.32 42.06 0.10 0.28 81.1
200 39.71 0.00 16.69 0.31 42.85 0.03 0.33 82.2
250 40.23 0.02 14.10 0.25 45.03 0.04 0.37 85.2
300 40.20 0.01 12.99 0.22 45.37 0.08 0.35 86.3
350 40.48 0.06 11.66 0.19 47.18 0.03 0.36 87.9
400 40.60 0.07 10.46 0.13 47.82 0.07 0.39 89.2
450 40.95 0.01 9.67 0.14 48.23 0.06 0.39 90.0
500 40.94 0.02 8.94 0.10 48.55 0.07 0.39 90.7
550 40.87 0.05 8.60 0.09 49.17 0.05 0.38 91.1
600 41.09 0.05 8.08 0.10 49.53 0.05 0.38 91.7
650 41.65 0.06 8.06 0.10 49.76 0.09 0.41 91.7
700 41.37 0.07 7.70 0.10 50.02 0.07 0.35 92.1
750 41.56 0.03 7.65 0.06 49.58 0.07 0.37 92.1
800 41.06 0.06 7.86 0.11 49.88 0.05 0.44 92.0
850 41.21 0.08 7.66 0.08 49.30 0.09 0.41 92.1
900 41.09 0.02 7.85 0.11 50.05 0.08 0.33 92.0
950 41.11 0.05 7.67 0.10 49.74 0.06 0.39 92.1

SG03.1 1000 41.13 0.03 7.80 0.08 48.13 0.04 0.34 91.7
1050 41.24 0.03 8.08 0.09 49.53 0.15 0.38 91.7
1100 41.34 0.04 8.12 0.10 49.58 0.10 0.39 91.7
1150 41.10 0.02 8.17 0.13 49.08 0.10 0.37 91.5
1200 36.13 0.04 8.18 0.08 44.27 0.04 0.34 90.7
1250 41.01 0.05 8.93 0.12 49.01 0.05 0.36 90.8
1300 41.02 0.03 9.04 0.13 48.38 0.08 0.37 90.6
1350 40.63 0.03 9.59 0.10 48.38 0.06 0.34 90.1
1400 40.82 0.01 10.00 0.10 48.32 0.06 0.36 89.7
1450 40.53 0.00 10.61 0.19 47.79 0.04 0.36 89.0
1500 40.22 0.00 11.17 0.12 46.81 0.06 0.32 88.3
1550 40.05 0.02 11.94 0.14 46.54 0.08 0.32 87.5
1600 39.76 0.00 12.67 0.20 45.75 0.05 0.33 86.7
1650 39.94 0.04 13.26 0.19 45.18 0.09 0.31 86.0
1700 39.83 0.00 14.04 0.25 44.55 0.06 0.32 85.1
1750 38.77 0.05 15.55 0.27 44.38 0.06 0.30 83.7
1800 39.31 0.01 16.00 0.32 43.06 0.08 0.34 82.9
1850 38.64 0.02 17.27 0.38 41.81 0.08 0.26 81.3
1900 38.58 0.00 17.85 0.41 41.57 0.04 0.29 80.7
1950 38.85 0.04 18.77 0.41 41.01 0.07 0.30 79.7

B 38.62 0.00 18.98 0.51 40.51 0.03 0.34 79.3

A 38.87 0.06 16.64 0.38 42.85 0.04 0.37 82.3
125 39.81 0.00 12.49 0.18 45.86 0.03 0.34 86.9
250 40.43 0.02 9.25 0.16 48.28 0.04 0.41 90.4
375 40.42 0.03 8.46 0.12 48.91 0.07 0.39 91.2

02ST-5 500 40.66 0.02 8.21 0.12 49.03 0.10 0.32 91.5
625 40.36 0.02 8.44 0.11 48.97 0.06 0.33 91.3
750 40.38 0.07 9.35 0.11 48.78 0.07 0.37 90.4
875 39.71 0.01 12.03 0.22 46.27 0.08 0.35 87.4
B 38.66 0.02 15.76 0.32 43.11 0.05 0.31 83.1

A 38.69 0.02 19.02 0.42 41.09 0.05 0.26 79.5
65 38.97 0.04 17.53 0.36 41.86 0.07 0.27 81.1

130 39.35 0.03 16.54 0.35 43.99 0.05 0.32 82.7
195 39.42 0.01 14.55 0.27 44.32 0.04 0.31 84.6
260 39.64 0.00 13.70 0.23 44.90 0.04 0.29 85.5
325 39.76 0.03 13.29 0.21 45.34 0.07 0.35 86.0
390 40.21 0.00 12.85 0.21 45.57 0.06 0.28 86.5
455 40.17 0.06 12.69 0.24 45.83 0.08 0.37 86.7

SG03.2 520 40.00 0.04 13.00 0.21 45.70 0.05 0.34 86.4
585 40.20 0.01 13.42 0.24 45.42 0.01 0.31 85.9
650 40.06 0.02 13.81 0.25 45.02 0.06 0.30 85.4
715 39.96 0.03 14.57 0.22 44.05 0.06 0.27 84.5
780 39.68 0.03 15.60 0.27 43.51 0.06 0.32 83.4
845 39.67 0.02 16.64 0.33 42.66 0.12 0.33 82.2
910 39.16 0.06 17.51 0.35 42.03 0.07 0.25 81.2
975 39.21 0.04 18.70 0.42 41.46 0.07 0.28 80.0
B 39.10 0.01 18.26 0.50 40.99 0.06 0.22 80.2

A 38.46 0.02 19.24 0.42 40.97 0.03 0.28 79.3
150 39.07 0.02 16.93 0.29 42.09 0.06 0.28 81.7
300 41.18 0.04 14.48 0.23 46.40 0.05 0.28 85.2
450 40.63 0.01 11.68 0.14 45.77 0.05 0.25 87.6
600 40.33 0.00 10.49 0.16 47.40 0.07 0.32 89.0
750 41.52 0.00 9.01 0.06 50.46 0.06 0.34 91.0
900 40.86 0.00 8.52 0.11 49.17 0.07 0.38 91.2
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Table 1. (Cont.)

Olivine μm SiO2 Cr2O3 FeO MnO MgO CaO NiO Mg no.

SG02 1050 41.10 0.04 8.57 0.10 48.56 0.02 0.36 91.1
1200 40.85 0.02 8.80 0.13 49.16 0.08 0.36 91.0
1350 41.66 0.04 10.80 0.15 48.24 0.06 0.34 88.9
1500 39.99 0.14 12.58 0.21 45.59 0.07 0.31 86.7
1650 42.15 0.17 14.94 0.25 42.89 0.09 0.28 83.8
1800 39.49 0.00 18.09 0.33 41.76 0.07 0.27 80.6

B 38.83 0.00 19.31 0.42 39.90 0.06 0.27 78.8

core 40.72 0.06 6.32 0.01 51.46 0.07 0.43 93.6
core 40.32 0.06 6.15 0.07 51.90 0.05 0.52 93.8
core 40.08 0.07 6.22 0.05 51.52 0.04 0.47 93.7
mantle 40.78 0.02 6.23 0.02 51.06 0.06 0.38 93.7

02ST-9 mantle 40.39 0.01 6.38 0.08 51.12 0.07 0.44 93.5
mantle 40.89 0.03 6.10 0.06 51.10 0.05 0.39 93.8
rim 39.77 0.06 10.29 0.18 48.25 0.02 0.37 89.4
rim 39.07 0.00 11.69 0.18 46.39 0.03 0.40 87.7

02ST-11 core 40.74 0.03 7.55 0.13 49.75 0.10 0.36 92.2
Grain 1 mantle 39.59 0.02 10.09 0.16 47.88 0.03 0.30 89.5

rim 39.44 0.00 13.82 0.28 44.84 0.03 0.28 85.4

02ST-11 core 40.37 0.03 7.18 0.09 50.19 0.04 0.35 92.6
Grain 2 mantle 40.67 0.05 9.17 0.13 48.49 0.02 0.33 90.5

rim 39.69 0.01 13.68 0.27 45.48 0.04 0.38 85.7

of the reaction. The bigger the olivine xenocrysts
are, the wider the compositional gradients that exist
between the cores and rims. For example, the olivine
in sample 02ST-9 is the biggest grain in this study
(with diameter up to 8 mm) (Table 1), and it exhibits
the largest core–rim variations in Mg no. (94–87). As
shown by the line analyses of olivine xenocrysts, the
chemical variation between the cores and rims is mainly
manifested in the Fe and Mg differences, since Mg and
Fe diffusion in olivine is rapid (Mg diffusion coefficient
in olivine is around 1.4 × 10−8 cm2 s−1: Brearley &
Scarfe, 1986; Redfern et al. 1996; Chakraborty, 1997).
As a result, preservation of the zoned olivine xenocrysts
requires the reaction duration to be short. Since
Mn has a comparable diffusion coefficient to Mg–
Fe, while the diffusion coefficient of Ca is about
1 order of magnitude slower than that for Mg–Fe
diffusion in olivine (Chakraborty, 1997; Coogan et al.
2005), the compositional zonation is also apparent in
terms of Mn, while there is no measurable zonation
of Ca on such a short timescale. It is also worth
noting that the Mg no. of the olivine xenocryst
rims should be equal or close to that of calculated
olivine equilibrating with gabbro, however, this is
not what we observed; the rims are much less Mg-
rich than expected for bulk equilibrium (Fig. 5). The
likely explanation is that when we calculated the
equilibrating olivine using whole rock compositions,
the olivine xenocrysts were not excluded, which
definitely increased the Mg no. of the whole rocks and
the subsequent calculated olivine values. Furthermore,
olivine xenocrysts described in basalts elsewhere
(Tang, Zhang & Ying, 2004; Zhang et al. 2004b; Shao
et al. 2005; Zhang, 2005) show much narrower rims
than those in the Shatuo gabbro because the reaction
durations between olivine xenocrysts and extrusive
basalts are considerably shorter than those of intrusive
gabbros.

5.c. Implications for the lithospheric mantle evolution of
North China Craton

It has been well documented that the North China
Craton experienced extensive lithospheric extension
during Late Mesozoic to Cenozoic times, which
resulted in large-scale removal of lithospheric mantle
and significant compositional change of the mantle
(Menzies, Fan & Zhang, 1993; Griffin et al. 1998; Xu,
2001; Gao et al. 2002; Zhang et al. 2002). The North
China Craton had a thick, cold and highly refractory
lithospheric mantle, at least prior to mid-Ordovician
times, as indicated by mantle xenoliths, xenocrysts
and diamond inclusions entrapped in Palaeozoic
kimberlites in Mengyin and Fuxian counties. The Mg
nos of olivine xenocrysts in those kimberlites are high
(92–95) and comparable to those of olivines from
kimberlite-borne peridotitic xenoliths (Zheng et al.
2001). Such highly refractory mantle peridotites have
been widely replaced by fertile mantle peridotites since
Mesozoic times, and olivines in those peridotites are
less magnesian (Mg no. < 91) (Menzies, Fan & Zhang,
1993; Griffin et al. 1998; Fan et al. 2000; Xu, 2001). It
is worth noting, however, that these observations were
mostly confined to the eastern part of the North China
Craton; the nature and evolution of lithosphere in the
central and western parts of the North China Craton
were not well constrained.

As mentioned above, the olivine xenocrysts in the
Shatuo gabbro represent disaggregated minerals from
the mantle peridotites at the time of gabbroic intrusion,
so the olivine xenocrysts can be used to discern the
nature of the lithospheric mantle beneath the central
North China Craton. The olivine cores from the Shatuo
gabbro have a very high Mg no. (> 92), which is similar
to those from Palaeozoic kimberlites in eastern China
and the olivines from high-Mg peridotites entrained
in Mesozoic and Cenozoic basalts (Fig. 6). Re–Os
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Figure 3. Compositional traverses for four representative olivine xenocrysts.

isotopic studies of the refractory mantle xenoliths
entrained in Palaeozoic kimberlites have revealed that
the lithospheric mantle is Archaean in age (Gao et al.
2002; Wu et al. 2006; Zhang et al. 2008). The high-
Mg peridotite xenoliths in Cenozoic Hebi basalts
were interpreted as relics of Archaean lithospheric
mantle, confirmed by Re–Os isotopic dating of
sulphide inclusions in olivines (Zheng et al. 2001,
2006).

Although the Mg no. of olivine actually only
reflects the degree of partial melting that the mantle
experienced rather than age, there is a correlation
between the ages of lithospheric mantle and olivine Mg
no. based on the studies of sub-continental peridotite
xenoliths entrained in kimberlites, lamproites and
basalts from different tectonic regimes. The Mg no.
of olivine of Archaean lithospheric mantle is usually

greater than 92, those of Proterozoic lithospheric
mantle between 91 and 92 and those of the Phanerozoic
less than 91 (Griffin, O’Reilly & Ryan, 1999). Such
a relationship can be accounted for by the relatively
higher degree of partial melting (25–30 %) of the
mantle peridotites in the Archaean and Proterozoic
due to the higher geothermal gradient at that time.
The geothermal gradient in the Phanerozoic was low
and the mantle underwent a lower degree of partial
melting, which would form less magnesian olivines if
no thermal anomaly such as a hot spot or mantle plume
was present. Though some highly magnesian olivines
in young dunites have been reported, the occurrence
of such dunites was only restricted to ophiolites and
was small in volume (veins or pods) (Suhr et al.
2003), and it is unlikely that the above dunitic
olivines are widely distributed in a cratonic lithospheric
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Figure 4. Olivine CaO content versus Mg no. (% forsterite)
plot showing the discrimination between phenocrysts crystal-
lized from magma and xenocrysts from disaggregated mantle
(Gurenko, Hansteen & Schmincke, 1996; Thompson & Gibson,
2000). Shaded region: olivines from mantle xenoliths included
in Palaeozoic kimberlites, Mesozoic and Cenozoic basalts in
eastern China (Zheng, 1999; Fan et al. 2000; Zheng et al. 2001;
Yan, Chen & Xie, 2003; Ying et al. 2006). Olivine phenocrysts
in Cenozoic basalts in eastern China (E & Zhao, 1987; Tang,
Zhang & Ying, 2004).

Figure 5. Olivine Mg no. versus MgO contents of whole rocks of
the Shatuo gabbro. Fe–Mg partition coefficient of 0.33 between
olivine and melt (Ulmer, 1989) was used in calculation. The
MgO and FeO contents of the Shatuo gabbro are as follows:
SG02: 8.43 wt %, 5.50 wt %; SG03: 8.41 wt %, 5.55 wt %;
02ST-5: 7.20 wt %, 5.10 wt %; 02ST-9: 11.81 wt %, 5.75 wt %;
02ST-11: 9.66 wt %, 5.60 wt %.

mantle. Consequently, it is reasonable to infer that the
lithospheric mantle beneath the central North China
Craton during late Mesozoic times, as reflected by the
olivine xenocrysts, was still refractory and ancient in
nature. In addition, all late Mesozoic mafic igneous
rocks in the central North China Craton demonstrated
the EM I isotopic feature (Chen & Zhai, 2003; Zhang
et al. 2004a; Wang et al. 2006), a character shared by
cratonic ancient mantle worldwide (Menzies, 1990).
Recent Sr, Nd and Os isotopic studies of the peridotite
xenoliths from the Cenozoic Yangyuan and Fansi alkali
basalts in the central North China Craton provided

Figure 6. Olivine Mg no. versus emplacement ages of mantle
xenolith-bearing volcanic rocks in eastern China. Data sources:
E & Zhao, 1987; Zheng, 1999; Fan et al. 2000; Zheng et al. 2001;
Yan, Chen & Xie, 2003; Ying et al. 2006; J. Zhang, unpub. Ph.D.
thesis, Chinese Acad. Sciences, 2007.

direct evidence that the underlying lithospheric mantle
is Archaean or very early Proterozoic (Xu et al.
2008).

In contrast to the widespread existence of Archaean
lithospheric mantle beneath the central North China
Craton in the late Mesozoic and Cenozoic, the
lithospheric mantle underneath the eastern North China
Craton is predominantly composed of young and
newly accreted material (Fan et al. 2000; Gao et al.
2002; Wu et al. 2003), although in some regions
ancient mantle residues are still present as shown by
the existence of high-Mg peridotite xenoliths (Zheng
et al. 2001; Ying et al. 2006) and Re–Os isotopic
data (Gao et al. 2002; Wu et al. 2006). In addition,
geophysical data, such as low heat flow (Hu, He &
Wang, 2000) and a negative Bouguer gravity anomaly
(Ma, 1989), have also implied a thick, cold lithosphere
in the western North China Craton. The contrasting
nature of the lithospheric mantle between the eastern
and central North China Craton suggests that they had
a different evolutionary history in Phanerozoic times;
the extensive lithospheric removal which resulted in
replacement of the ancient and refractory lithospheric
mantle by a young fertile one was mainly confined to
the eastern North China Craton, while the lithospheric
mantle beneath the central and western North China
Craton was weakly affected.

6. Conclusions

The zoned olivine crystals from the late Mesozoic
Shatuo gabbro are xenocrysts that disaggregated from
mantle peridotites and can be used to discern the
nature of the lithospheric mantle at the time of the
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gabbro intrusion. The zoned texture was formed by
diffusional exchange between olivine and the host
melt due to their compositional disequilibria. The
compositions of olivine cores represented those of
mantle peridotites. The similarities in composition of
the olivine cores to those from Palaeozoic kimberlites
and high-Mg peridotites imply that the lithospheric
mantle beneath the central North China Craton is
ancient and refractory, which is in sharp contrast to
the prevalent young and newly accreted features of the
mantle beneath the eastern North China Craton. The
different natures of lithospheric mantle of the eastern
and western North China Craton suggest that the
extensive lithospheric removal was mainly confined to
the eastern North China Craton, while the lithospheric
mantle beneath the central North China Craton was
weakly affected.
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