Details of the Faculty or Staff |
Name |
WAN Bo |
Title |
Professor |
Highest Education |
Ph.D. |
Subject Categories |
Geology |
Phone |
010-8299-8154 |
Zip Code |
100029 |
Fax |
010-62010846 |
Email |
wanbo@mail.iggcas.ac.cn |
Office |
No.19 Beitucheng West Road, Chaoyang District, Beijing, 100029, China |
|
|
Education and Appointments: |
Born in 1982, Qinghai Province, China. - 2017 to present: Professor. Metallogeny and Tectonics
- 2012 to 2016: Associate Professor. Metallogeny and Tectonics
- 2013:Visiting scientist at Department of Geological Sciences, Stockholm University, Sweden.
- 2011: Post-doctoral fellow. Project on “The geodynamic and metallogenic evolution of the Chinese Altay”.
- 2009: PhD. Thesis on “VMS deposits in the lateral accretion of the Chinese Altai: geological, geochemical characteristics and metallogenic mechanisms”. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.
- 2008: Official exchange PhD student. Project on “Geochronology of the Chehugou porphyry Mo-Cu deposit” at Munich University, Munich, Germany.
- 2004: BSc. Chang’an University, Xi’an, China.
|
Research Interests: |
Global plate tectonics Plate tectonics describe the motions of rigid plates on Earth's surface. However, it is debated what drives the plates to move and when the plate network became a global phenomenon. I assessed the geology and geophysics of deep time records from numerous locations throughout the world to answer the KEY questions. Plate tectonics, which causes continents to assemble and disperse, has a significant impact on mineral resources and climate. However, it is still unclear how plate motion and associated magmatism altered Earth's surface system. I'm aiming to examine the genetic relationship that exists between the deep Earth and the surface using rock records. |
Publications: |
Google scholar
Editor responsibility
|
Editorial board: Science China Earth Science |
|
|
Graduated students and postdocs# |
1. |
Dong, L., 2018, Fingerprinting the source of deposits: insights from two types of gold deposits in Chinese Western Tianshan. PhD Thesis. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 133pp.(2020: Lecture at University Of Science & Technology Beijing) supporting papers: No. 13, 14, 18 |
2. |
Tan, Z#., 2020, Tectonics in South Tianshan. (2020: Associated Prof. at Research Centre for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences) supporting papers: No. 57, 60 |
3. |
Hansman, R#,2021. Structural architecture of the Saih Hatat Dome (Oman)(2023 geologist at the Northern Territory Geological Survey, Australia) supporting papers: No. 74 |
4. |
Deng, C. 2021. Trigger for the genesis of Cu-rich and S-rich magmas along the convergent margin. PhD Thesis. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 156pp. (2022: Postdoc in Shenzhen) supporting papers: No. 15, 85,95 |
5. |
Liu, YH. 2021. Development and geological application of ultra-low content gold determination technology in a trace amount of rock. PhD Thesis. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 137pp. (2022: Senior technician in IGG) supporting papers: No. 19, 22, 66 |
6. |
Yang XS. 2022. Study on crustal strucute beneath the east Junggar and its implication for continental growth supporting papers: No. 23, 111 co-supervising with Prof. Tian XB |
7. |
Liu, W. 2023. Decarbonation of Skarn Deposits Located in Eastern Asia—Calculation of Carbon Flux. PhD Thesis. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 137pp. (2024: PetroChina Xi’an) supporting papers: No. 97, 110 |
8.
|
Yan, SC. 2024. Iron-oxide Apatite deposits: from genesis to the time-space distribution. PhD Thesis. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 130pp. (2024: postdoc in IGG) supporting papers: No. 28, 29, 32
|
|
|
First-author and corresponding author* peer-reviewed publications: |
32.
|
Yan, S.C.,Wan, B.*,Anenburg, M. and Mavrogenes, J.A., 2024. Silicate and iron phosphate melt immiscibility promotes REE enrichment. Geochemical Perspectives Letters, 32: 14-20. |
31.
|
Wan, B*,2024. Is there Paleoproterozoic eclogite facie rock in Alxa along the northern margin of the North China Craton? Precambrian Research, 410. |
30. |
Wan, B*.,Wu, F., and Zhu, R., 2023, The influence of Tethyan evolution on changes of the Earth’s past environment: Science China Earth Sciences, v. 53, no. 12, p. 2653-2665. |
29. |
Yan, S.,Wan, B*.and Andersson, U.B., 2023. Hydrothermal circulation at 1.8 Ga in the Kiruna area, northern Sweden, as revealed by apatite geochemical systematics (IOA) deposit and the region. Precambrian Research: v.395,107151. |
28. |
Yan, S.,Wan, B*.and Andersson, U.B., 2023. Apatite age and composition: A key to the geological history of the Malmberget Iron-Oxide-Apatite (IOA) deposit and the region. Journal of Geochemical Exploration: v252,107267. |
27. |
Wan, B.,*Chu, Y., Chen, L., Zhang, Z., Ao, S. and Talebian, M., 2022. When and Why the Neo-Tethys subduction initiation along the Eurasian margin: a case study from a Jurassic eclogite in southern Iran, in Catlos, E. J., and Cemen, I., eds., Tectonic Processes: a Global View Volume Volume II. Compressional Tectonics: Plate Convergence to Mountain Building: AGU/Wiley. (Invited) |
26. |
Wan, B*,2022, Onset of plate tectonics: controversies, progresses and prospects: Chinese Science Bulletin, , v67,3849-3860(in Chinese with English Abstract Invited) |
25. |
Wan, B.*Chu, Y., Chen, L., Liang, XF, Zhang ZY, Ao, SJ, Talebian, M, 2021, Paleo-Tethys subduction induced slab-drag opening the Neo-Tethys: Evidence from an Iranian segment of Gondwana, Earth-Science Reviews, 221. 103788 |
24. |
Wan, B.*,Wang, X., Cai, K., Liu, X., Xiao, W.J., Mitchell R.N. 2021 Long-lived seamount subduction in ancient orogens: Evidence from the Paleozoic South Tianshan, Geology, v. 49., doi: 10.1130/G48547.1 |
23. |
Wan, B.*,Yang, X.S., Tian, X.B.*, Yuan, H.Y., Kirscher, U., Mitchell R.N.* 2020, Seismological evidence for the earliest global subduction network at 2 Ga ago: Science Advances, v.6,10.1126/sciadv.abc5491 |
22. |
Liu, Y., Xue, D., Li, W, Li, C.Wan, B.*2020, A simple method for the precise determination of multi-elements in pyrite and magnetite by ICP-MS and ICP-OES with matrix removal: Microchemical Journal, 105221 |
21. |
Dong, L.,Wan, B.*,Deng, C., and Cai, K. 2020, Mineral chemistry and sources of fluid and sulfur at the Katbasu gold deposit in South Tianshan, NW China: Ore Geology Reviews, v.116. 123224. |
20. |
Zang, Z., Dong, L., Liu, W., Zhao, H., Wang, X., Cai, K., andWan, B.*,2019, Garnet U-Pb and O isotopic determinations reveal a shear-zone induced hydrothermal system: Scientific Reports, v. 9, p. 10382. doi: 10.1038/s41598-019-46868-4 |
19. |
Liu, Y.,Wan, B.*and Xue, D., 2019. Sample digestion and combined preconcentration methods for the determination of ultra-low gold levels in rocks. Molecules, v.24, doi:10.3390/molecules24091778 |
18. |
Wan, B.*,Wu, F.-Y., Chen, L., Zhao, L., Liang, X., Xiao, W., and Zhu, R., 2019, Cyclical one-way continental rupture-drift in the Tethyan evolution: subduction-driven plate tectonics: SCIENCE CHINA Earth Sciences, v.62, p.2005-2016, doi: 10.1007/s11430-019-9393-4 |
17. |
Wan, B.*, Li, S., Xiao, W., and Windley, B. F., 2018 Where and when did the Paleo-Asian ocean form?: Precambrian Research,v.317, p.241-252. |
16. |
Wan, B.*, Deng, C, Najafi, A, Hezarehd, M., Talebian, M. Dong, L., Chen, L., Xiao, W., 2018, Fertilizing porphyry Cu deposits through deep crustal hot zone melting: Gondwana Research, v.60, p.179-185. |
15. |
Deng, C.,Wan, B.*, Dong, L., Talebian, M., Windley, B. F., Dadashzadeh, H., Mohammadi, B., and Barati, B., 2018, Miocene porphyry copper deposits in the Eastern Tethyan orogenic belt: Using Sr, O isotopes and Sr/Y ratios to predict the source of ore-related and ore-barren magmas: Gondwana Research, v.62, p.14-26. |
14. |
Dong, L.,Wan, B.*, Yang, W., Deng, C., Chen, Z., Yang, L., Cai, K., and Xiao, W., 2018, Rb-Sr geochronology of single gold-bearing pyrite grains from the Katbasu gold deposit in the South Tianshan, China and its geological significance: Ore Geology Reviews, v.100, p.99-110. |
13. |
Dong, L.,Wan, B.*, Deng, C., Cai, K., and Xiao, W., 2018, An Early Permian epithermal gold system in the Tulasu Basin in North Xinjiang, NW China: Constraints from in situ oxygen-sulfur isotopes and geochronology: Journal of Asian Earth Sciences, v.153, p.412-424. |
12. |
Wan, B.*, Xiao, W., Windley, B. F., Gao, J., Zhang, L., and Cai, K., 2017, Contrasting ore styles and their role in understanding the evolution of the Altaids: Ore Geology Reviews, v. 80, p. 910-922. |
11. |
Wan, B.*, Windley, B. F., Xiao, W., Feng, J., and Zhang, J. e., 2015, Paleoproterozoic high-pressure metamorphism in the northern North China Craton and implications for the Nuna supercontinent: Nature communications, v. 6, p. 8344. |
10. |
Wan, B.*, Xiao, W., Han, C., Windley, B. F., Zhang, L., Qu, W., and Du, A., 2014, Re–Os molybdenite age of the Cu–Mo skarn ore deposit at Suoerkuduke in East Junggar, NW China and its geological significance: Ore Geology Reviews, v. 56, p. 541-548. |
9. |
Wan, B.*, Xiao, W., Windley, B. F., and Yuan, C., 2013, Permian hornblende gabbros in the Chinese Altai from a subduction-related hydrous parent magma, not from the Tarim mantle plume: Lithosphere, v. 5, no. 3, p. 290-299. |
8. |
Wan, B.*, Xiao, W., Zhang, L., and Han, C., 2012, Iron mineralization associated with a major strike–slip shear zone: radiometric and oxygen isotope evidence from the Mengku deposit, NW China: Ore Geology Reviews, v. 44, p. 136-147. |
7. |
Wan, B.*, Xiao, W., Zhang, L., Windley, B. F., Han, C., and Quinn, C. D., 2011, Contrasting styles of mineralization in the Chinese Altai and East Junggar, NW China: implications for the accretionary history of the southern Altaids: Journal of the Geological Society, v. 168, no. 6, p. 1311-1321. |
6. |
Wan, B.*, Zhang, L., and Xiang, P., 2010, The Ashele VMS‐type Cu‐Zn Deposit in Xinjiang, NW China Formed in a Rifted Arc Setting: Resource Geology, v. 60, no. 2, p. 150-164. |
5. |
Wan, B.*, Zhang, L., and Xiao, W., 2010, Geological and geochemical characteristics and ore genesis of the Keketale VMS Pb–Zn deposit, Southern Altai Metallogenic Belt, NW China: Ore Geology Reviews, v. 37, no. 2, p. 114-126. |
4. |
Wan, B.*, Hegner, E., Zhang, L., Rocholl, A., Chen, Z., Wu, H., and Chen, F., 2009, Rb-Sr geochronology of chalcopyrite from the Chehugou porphyry Mo-Cu deposit (Northeast China) and geochemical constraints on the origin of hosting granites: Economic Geology, v. 104, no. 3, p. 351-363. |
3. |
Wan B.*, Zhang LC, Xu XW, Sun H. 2006. Geochemical characteristics of volcanic, sub-volcanic rocks in Xiaoshitouquan copper polymetallic deposit, Eastern Tianshan, and its metallogenic setting.Acta Petrologica Sinica,22(11): 2711-2718 (in Chinese with English abstract). |
2. |
Wan B.*, Zhang LC. 2006. Geochemistry of ore-bearing porphyries in the Kalaxianger copper belt on the southeastern margin of the Altay Mountains, Xinjiang. Geology in China, 33: 169-176 (in Chinese with English abstract). |
1. |
Wan B.*, Zhang LC. 2006. Sr-Nd-Pb isotope geochemistry and tectonic setting of Devonian polymetallic metallogenic belt on the Southern margin of Altaid, Xinjiang. Acta Petrologica Sinica, 22(1):145-152 (in Chinese with English abstract). |
|
|
Collaborating-author peer-reviewed publications: |
2024 |
120.
|
Li, T., Zhao, L., Zhao, R., Murdie, R.E., Gessner, K., Xu, X., Wang, K.,Wan, B.,Ventosa, S. and Yuan, H., 2024. A crustal radially anisotropic shear-wave velocity model of Northwestern Australia. Precambrian Research, 410: 107457. |
119.
|
Zhao, X., Wang, X.-J., Jia, X., Evans, N.J., Yi, C., Chen, L.-H., Hanyu, T., Li, J.,Wan, B.,Zhu, X. and Zhang, H., 2023. Titanium isotopic fractionation during alkaline magma differentiation at St. Helena Island. Contributions to Mineralogy and Petrology, 179(1). |
118.
|
Liu, K., Xiao, W., Wilde, S.A., Liu, J., Zhang, J.,Wan, B.,Ao, S. and Xu, M., 2024. Arc Magmatism Controlled by Switches in Tectonic Style: Insights from the NE Asian Margin in the Cretaceous. Geophysical Research Letters, 51(2). |
117.
|
Xu, M., Xiao, W., Liu, K.,Wan, B.,Mitchell, R.N., Rosenbaum, G. and Wang, H., 2024. Subduction erosion revealed by exhumed lower arc crustal rocks in an accretionary complex, northeastern China. Geology, 52(6): 400-404. |
116.
|
Liu, Y.H., Guo, S., Li, W.J., Xue, D.S., Li, C.F. andWan, B.,2024. Rapid and Complete Digestion of Refractory Geological Samples Using Ultrafine Powder for Accurate Analyses of Trace Elements. Anal Chem, 96(17): 6523-6527. |
115. |
Wang, C., Xie, S., Zhang, X., Tong, X., Bai, Y., Peng, Z., Dong, Z., Zhang, L. andWan, B.,2024. Deciphering the source of banded iron formations in the North China Craton. Precambrian Research, 402: 107298. |
114. |
Liu, T., Liu, C.-Z., Wu, F.-Y., Topuz, G.,Wan, B.,Wang, J.-M. and Chen, G., 2024. Detachment Fault-Hosted Subduction Re-Initiation of the (Ultra)Slow-Spreading Western Neo-Tethys in the Jurassic. Geochemistry, Geophysics, Geosystems, 25(2): e2023GC011173. |
113. |
Zhu, R., Wang, H., Wang, H., Wang, X.,Wan, B.,Zhang, W., Zhu, H., Liu, Y., Liu, J., Meng, Q., Hao, F. and Jin, Z., 2024. Multi-spherical interactions and mechanisms of hydrocarbon enrichment in the Southeast Asian archipelagic tectonic system. Science China Earth Sciences, 67(2): 566-583. |
112. |
Jiang, L., A. Shen, Z. Qiao, A. Hu, Z. Xu, H. Zhang,B. Wan,and C. Cai (2024), Hypogenic karstic cavities formed by tectonic-driven fluid mixing in the Ordovician carbonates from the Tarim Basin, northwestern China, AAPG Bulletin, 108(1), 159-178, doi:10.1306/08022321011. |
111.
|
Yang, X., X. Tian,B. Wan,H. Yuan, L. Zhao, and W. Xiao (2024), Impact of Ancient Tectonics on Intracontinental Deformation Partitioning: Insights From Crustal Structures of the East Junggar-Altai Area, Journal of Geophysical Research: Solid Earth, 129(3), e2023JB027949, |
110. |
Liu, Wei,Wan, B,2024. Carbon flux from hydrothermal skarn ore deposits and its potential impact to the environment. Gondwana Research. 10.1016/j.gr.2023.09.017 |
2023 |
109. |
Liang, X., Chu, Y.,Wan, B.,Chen, L., Chen, L., Sandvol, E., Grand, S.P., Li, Y., Wang, M., Tian, X., Chen, Y., Xu, T., Li, Y. and Ji, W.-Q., 2023. Fragmentation of continental subduction is ending the Himalayan orogeny. Science Bulletin. /10.1016/j.scib.2023.10.017 |
108. |
Li, T., Jiang, M., Zhao, L., Chu, Y., Yao, W.,Wan, B.,Chen, L., Ai, Y., Bodin, T. and Yuan, H., 2023. Continental Fragments in the South China Block: Constraints From Crustal Radial Anisotropy. Journal of Geophysical Research: Solid Earth, 128(10). |
107. |
Yuan, J., Deng, C., Yang, Z., Krijgsman, W., Thubtantsering, Qin, H., Yi, L., Zhao, P.,Wan, B.,Zhao, L., He, H., Guo, Z. and Zhu, R., 2023. New paleomagnetic data from the central Tethyan Himalaya refine the size of Greater India during the Campanian. Earth and Planetary Science Letters, 622. |
106. |
Song, DF., Mitchell, R, Xiao, W., Mao, Q.,Wan, B.Ao, SJ, 2023. Andean-type orogenic plateau as a trigger for aridification in the arcs of northeast Pangaea. Communications Earth & Environment, 3. 10.1038/s43247-023-00976-2 |
105. |
姜禾禾, 王佳敏,万博.2023. 国际岩矿地球化学固碳技术研究进展. 第四纪研究3: 494-508. doi: 10.11928/j.issn.1001-7410.2023.02.17 |
104. |
Hwang, J., Park, J.-W.,Wan, B.and Honarmand, M., 2023. Contrasting platinum-group element geochemistry of post-collisional porphyry Cu ± Au ore-bearing and barren suites in the central and southeastern Urumieh-Dokhtar magmatic arc, Iran. Mineralium Deposita. 10.1007/s00126-023-01195-7. |
103. |
Wang, G., Tian, X., Li, Y., Xu, T.,Wan, B.,Chen, Y., Nie, S., Yang, X., Zuo, S. and Zhang, J., 2023. Indian plate blocked by the thickened Eurasian crust in the middle of the continental collision zone of southern Tibet. Earthquake Research Advances: 100233. |
102. |
Zhang, Z., Zack, T., Kohn, B., Malusà, M.G., Wu, L., Rezaeian, M., Wang, N., Xiang, D., Guo, C., Esmaeili, R.,Wan, B.and Xiao, W., 2023. From Tethyan subduction to Arabia-Eurasia continental collision: Multiple geo-thermochronological signals from granitoids in NW Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, v621, 111567. |
101. |
Nie, S., Tian, X., Liang, X. andWan, B.,2023. Less-Well-Developed Crustal Channel-Flow in the Central Tibetan Plateau Revealed by Receiver Function and Surface Wave Joint Inversion. Journal of Geophysical Research: Solid Earth, 128(4): e2022JB025747. |
100. |
Ding, W., Zhu, R.,Wan, B.,Zhao, L., Niu, X., Zhao, P., Sun, B. and Zhao, Y., 2023. Geodynamic processes of the southeastern Neo-Tethys Ocean and the formation mechanism of the curved subduction system in Southeast Asia. Science China Earth Sciences, 66: 703-717. |
99. |
Zhu Rixiang, Zhang Shuichang,Wan Bo,Zhang Wang, Li Yong, Wang Huajian, Luo Beiwei, Liu Yuke, He Zhiliang, Jin Zhijun, 2023. Effects of Neo-Tethyan evolution on the petroleum system of Persian Gulf superbasin. Petroleum Exploration and Development, 50: 1-11. |
|
|
2022 |
98. |
Ma, Y., Wang, Q., Wang, H.,Wan, B.,Zhang, S., Deng, C., Zheng, D., Ren, Q., Yang, T., Wu, D., Zou, D., Wang, J., Liu, X., Kang, Z., Dan, W., Han, F. and Dekkers, M.J., 2022. Jurassic Paleomagnetism of the Lhasa Terrane – Implications for Tethys Evolution and True Polar Wander. Journal of Geophysical Research: Solid Earth,2022JB025577. |
97. |
Liu Wei,Wan Bo,Yan ShengChao. 2022. Pathways of carbon emissions to atmosphere due to skarnification. Acta Petrologica Sinica, 38(5): 1557-1563. |
96. |
Tan, Z., Xiao, W., Mao, Q., Wang, H., Sang, M., Li, R., Gao, L., Guo, Y., Gan, J., Liu, Y. andWan, B.,2022. Final closure of the Paleo Asian Ocean basin in the early Triassic. Communications Earth & Environment, 3(1). |
95. |
Deng, C., Jenner, F.E.,Wan, B.,Kunz, B.E. and Bullock, E.S., 2022. Effects of mantle flow on the chemistry of Coriolis Troughs backarc magmas. Chemical Geology: 121116. |
94. |
Wang, X., Chen, L., Talebian, M., Ai, Y., Jiang, M., Yao, H., He, Y., Ghods, A., Sobouti, F.,Wan, B.,Chu, Y., Hou, G., Chen, Q.F., Chung, S.L., Xiao, W., Wu, F.Y. and Zhu, R., 2022. Shallow Crustal Response to Arabia‐Eurasia Convergence in Northwestern Iran: Constraints From Multifrequency P‐Wave Receiver Functions. Journal of Geophysical Research: Solid Earth, 127(9). |
93. |
Yang, S., Liang, X., Jiang, M., Chen, L., He, Y., Thet Mon, C., Hou, G., Thant, M., Sein, K. andWan, B.,2022. Slab remnants beneath the Myanmar terrane evidencing double subduction of the Neo-Tethyan Ocean. Science Advances, 8(34). 10.1126/sciadv.abo1027 |
92. |
Yan, Z., Chen, L., Zuza, A, Tang, J.,Wan, B.and Xu, H., 2022. The fate of oceanic plateaus: subduction versus accretiong. Geophysical Journal International, 10.1093/gji/ggac266 |
91. |
Zhang, Y.-B.,Wan, B.,Wu, F.-Y., Zhai, M.-G., Wang, T., Zhang, X.-H., Li, Q.-L., Peng, P., and Hou, Q.-L., 2022, Late Cretaceous-early Paleogene magmatism in the Gyeongsang basin, southeast Korea and its implications for middle Paleogene climate change: Journal of Asian Earth Sciences, p. 105346. |
90. |
Li, T., Jiang, M., Zhao, L., Yao, W., Chen, L., Chu, Y., Sun, B., Ai, Y.,Wan, B.,Gessner, K., and Yuan, H., 2022, Wedge tectonics in South China: constraints from new seismic data: Science Bulletin. |
89. |
Wang, H., Cai, K., Sun, M., Xia, X.-P., Lai, C.-K., Li, P.,Wan, B.and Zhang, Z., 2022. Apatite as a magma redox indicator and its application in metallogenic research. Lithos, 422-423. |
88. |
Wang, K., Cai, K., Sun, M., Wang, X., Xia, X.P., Zhang, B. andWan, B.,2022. Diapir Melting of Subducted Mélange Generating Alkaline Arc Magmatism and Its Implications for Material Recycling at Subduction Zone Settings. Geophysical Research Letters, 49(10). 10.1029/2021gl097693 |
87. |
Xue, D.-S., Tian, H.-C., Zhang, D.-P., Liu, Y.-H., Sun, J.-F., Wu, S.-T., Liu, S.-K., Guo, S. andWan, B.,2022. Quantitative verification of 1:35 diluted fused glass disks with 10 mg sample sizes for the wavelength-dispersive X-ray fluorescence analysis of the whole-rock major elements of precious geological specimens. Spectrochimica Acta Part B: Atomic Spectroscopy, 193. 106433 |
86. |
Yuan, J., Deng, C., Yang, Z., Krijgsman, W., Thubtantsering, Qin, H., Shen, Z., Hou, Y., Zhang, S., Yu, Z., Zhao, P., Zhao, L.,Wan, B.,He, H. and Guo, Z., 2022. Triple-stage India-Asia collision involving arc-continent collision and subsequent two-stage continent-continent collision. Global and Planetary Change, 212. |
85. |
Deng, C., Jenner, F.E.,Wan, B.and Li, J.L., 2022. The Influence of Ridge Subduction on the Geochemistry of Vanuatu Arc Magmas. Journal of Geophysical Research: Solid Earth, 127. e2021JB022833. |
84. |
Zhao, L., Tyler, I.M., Gorczyk, W., Murdie, R.E., Gessner, K., Lu, Y., Smithies, H., Li, T., Yang, J., Zhan, A.,Wan, B.,Sun, B. and Yuan, H., 2022. Seismic evidence of two cryptic sutures in Northwestern Australia: Implications for the style of subduction during the Paleoproterozoic assembly of Columbia. Earth and Planetary Science Letters, 579: 117342. |
|
|
2021 |
83. |
Salih, M.O.,Wan, B.and Lentz, D.R., 2021. Geochemistry and petrogenesis of anorogenic REE-bearing peralkaline granitoids from Northern Sudan. Neues Jahrbuch für Mineralogie - Abhandlungen, 197(2): 185-208. |
82. |
Wang, H., Cai, K., Sun, M., Wang, Y., Lai, C.-K.,Wan, B.and Zhang, Z., 2021. Magma evolution and Cu-Au mineralization potential of the Upper Devonian-Lower Carboniferous Tulasu basin, Western Tianshan Orogen (NW China): Apatite U-Pb dating and geochemical perspectives. Ore Geology Reviews, 139: 104526. |
81. |
Espeche, M.J.,Wan, B.,Lira, R. and Seltmann, R., 2021. Mineral chemistry and U-Pb garnet geochronology of strongly reduced tungsten skarns at the Pampa de Olaen mining district, Córdoba, Argentina. Ore Geology Reviews: 104379. |
80. |
Chu, Y., Allen, M.B.,Wan, B.,Chen, L., Lin, W., Talebian, M., Wu, L., Xin, G. and Feng, Z., 2021. Tectonic exhumation across the Talesh-Alborz Belt, Iran, and its implication to the Arabia-Eurasia convergence. Earth-Science Reviews, 221. 103776 |
79. |
Chu, Y.,Wan, B.,Allen, M.B., Chen, L., Lin, W., Talebian, M. and Xin, G., 2021. Detrital zircon age constraints on the evolution of Paleo-Tethys in NE Iran: implications for subduction and collision tectonics. Tectonics, e2020TC006680. |
78. |
Mao, Q., Ao, S., Windley, B.F., Zhang, Z., Song, D., Zhang, J.e.,Wan, B.,Tan, W., Han, C. and Xiao, W., 2021. Petrogenesis of Late Carboniferous-Early Permian mafic-ultramafic-felsic complexes in the eastern Central Tianshan, NW China: The result of subduction-related transtension? Gondwana Research, v95, 10.1016/j.gr.2021.03.007 |
77. |
Ao, S., Mao, Q., Windley, B.F., Song, D., Zhang, Z., Zhang, J.e.,Wan, B.,Han, C. and Xiao, W., 2021. The youngest matrix of 234 Ma of the Kanguer accretionary mélange containing blocks of N-MORB basalts: constraints on the northward subduction of the Paleo-Asian Kanguer Ocean in the Eastern Tianshan of the Southern Altaids. International Journal of Earth Sciences, v110, p.791-808. |
76. |
Yan, Z., Chen, L., Xiong, X.,Wan, B.and Xu, H., 2021. Oceanic Plateau and Subduction Zone Jump: Two‐Dimensional Thermo‐Mechanical Modeling. Journal of Geophysical Research: Solid Earth, 126. |
75. |
Esmaeili, R., Ao, S., Shafaii Moghadam, H., Zhang, Z., Griffin, W.L., Ebrahimi, M., Xiao, W.,Wan, B.and Bhandari, S., 2021. Amphibolites from makran accretionary complex record Permian-Triassic Neo-Tethyan evolution. International Geology Review: 1-17. |
74. |
Hansman, R.J., Ring, U., Scharf, A., Glodny, J. andWan, B.,2021. Structural architecture and Late Cretaceous exhumation history of the Saih Hatat Dome (Oman), a review based on existing data and semi-restorable cross-sections. Earth-Science Reviews, v 217, 10.1016/j.earscirev.2021.103595 |
73. |
Yang, S., Li, Z.H.,Wan, B.,Chen, L. and Kaus, B.J.P., 2021. Subduction‐Induced Back‐Arc Extension Versus Far‐Field Stretching: Contrasting Modes for Continental Marginal Break‐Up. Geochemistry, Geophysics, Geosystems, v 22, 10.1029/2020gc009416 |
72. |
Lu, G., Zhao, L., Chen, L.,Wan, B.and Wu, F., 2021. Reviewing subduction initiation and the origin of plate tectonics: What do we learn from present-day Earth? Earth and Planetary Physics, v5, p1-18. |
71. |
Ao, S., Mao, Q., Khalatbari-Jafari, M., Windley, B. F., Song, D., Zhang, Z., Zhang, J. e.,Wan, B.,Han, C., and Xiao, W., U–Pb age, Hf–O isotopes, and geochemistry of the Sardasht ophiolite in the NW Zagros orogen: Implications for the tectonic evolution of Neo-Tethys: Geological Journal, v56, p.1315-1329 |
70. |
Sun, M., Cai, K., Sun, M.,Wan, B.,Wang, X., and Bao, Z., 2020, Devonian arc-related granitoids in the Northwestern Chinese Tianshan, Central Asian Orogenic Belt: implications for the bending of the Kazakhstan Orocline: International Geology Review, v63, doi:10.1080/00206814.2020.1737975 |
|
|
2020 |
69. |
Zhang, D.P., Xue, D.S., Liu, Y.H.,Wan, B.,Guo, Q., and Guo, J.J., 2020, Comparative Study of Three Mixing Methods in Fusion Technique for Determining Major and Minor Elements Using Wavelength Dispersive X-ray Fluorescence Spectroscopy: Sensors, v. 20, doi:10.3390/s20185325 |
68. |
Han, C., Xiao, W., Su, B., Asamoah Sakyi, P., Ao, S., Zhang, J.,Wan, B.,Song, D., Zhang, Z., Wang, Z., and Xie, M., 2020, Age and tectonic setting of the Jingangku Besshi-type volcanogenic massive sulfide deposit from the Northern Shanxi, North China Craton: Precambrian Research, v. 350, p. 105873 |
67. |
Han, C., Xiao, W., Su, B., Asamoah Sakyi, P., Ao, S., Zhang, J.,Wan, B.,Song, D., Zhang, Z., Wang, Z., and Xie, M., 2020, Late Paleozoic metallogenesis and evolution of the Chinese Western Tianshan Collage, NW China, Central Asia orogenic belt: Ore Geology Reviews, v. 124, p. 103643, doi:10.1016/j.oregeorev.2020.103643 |
66. |
Liu, Y., Wang, Z., Xue, D., Yang, Y., Li, W., Cheng, H., Patten, C., andWan, B.,2020, An Improved Analytical Protocol for the Determination of Sub-nanogram Gold in 1–2 g Rock Samples Using GFAAS after Polyurethane Foam Pretreatment: Atomic Spectroscopy, v.41, 131-140, doi: 10.46770/AS.2020.03.006 |
65. |
Wu, F.Y.,Wan, B.,Zhao, L., Xiao, W.J, Zhu, R.X., 2020, Tethyan geodynamics. Acta Petrologica Sinica, 36: p.1627-1674 (in Chinese with English Abstract) |
64. |
Li, TZ, Zhao, L.,Wan, B.,Li, Z.X., Bodin, T., Wang, K., Yuan, H.Y. 2020. New Crustal Vs model along an array in south-east China: Seismic Characters and paleo-Tethys continental amalgamation, Geochemistry, Geophysics, Geosystems, doi: 10.1029/2020GC009024 |
63. |
Song, SH, Xiao, W.J*, Windley, B.F., Collins, A.S., Chen Y.C, Zhang, Je, Schulmann, K. Han, C.M.,Wan, B.,Ao, SJ., Zhang, Z.Y., Song, D.F., Li, R. 2020, Late Paleozoic Chingiz and Saur arc amalgamation in West Junggar (NW China): implications for accretionary tectonics in the southern Altaids, Tectonics, doi: 10.1029/2019TC00578 |
62. |
Esmaeili, R., Xiao, W., Griffin, W. L., Moghadam, H. S., Zhang, Z., Ebrahimi, M., Zhang, J.,Wan, B.,Ao, S., and Bhandari, S., 2020, Reconstructing the source and growth of the Makran Accretionary Complex: Constraints from detrital zircon U‐Pb geochronology: Tectonics, doi:10.1029/2019tc005963 |
61. |
Chen, L., Wang, X., Liang, X.Wan, B.and Liu, L.J. 2020. Subduction Tectonics vs. Plume Tectonics – discussion on driving forces for plate: SCIENCE CHINA Earth Sciences, doi:10.1007/s11430-019-9538-2 |
60. |
Tan, Z., Agard, P., Gao, J., Hong, T. andWan, B.2020. Concordant pulse in Mn, Y and HREEs concentrations during UHP eclogitic garnet growth: Transient rock dynamics along a cold subduction plate interface. Earth and Planetary Science Letters, v. 115908. |
|
|
2019 |
59. |
Xiao W, Song D, Windley B F, Li J, Han C,Wan B,Zhang J, Ao S, Zhang Z. 2019. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt. Science China Earth Sciences, https://doi.org/10.1007/s11430-019-9524-6 |
58. |
Esmaeili, R., Xiao, W., Ebrahimi, M., Zhang, J. E., Zhang, Z., Abd El-Rahman, Y., Han, C.,Wan, B.,Ao, S., Song, D., Shahabi, S., and Aouizerat, A., 2019, Makran ophiolitic basalts (SE Iran) record Late Cretaceous Neotethys plume-ridge interaction: International Geology Review, p. 1-21. |
57. |
Tan, Z., Agard, P., Monié, P., Gao, J., John, T., Bayet, L., Jiang, T., Wang, X.-S., Hong, T.,Wan, B.,and Caron, B., 2019, Architecture and P-T-deformation-time evolution of the Chinese SW-Tianshan HP/UHP complex: Implications for subduction dynamics: Earth-Science Reviews, v. 197, doi: 10.1016/j.earscirev.2019.102894 |
56. |
Liu, X., Liu, W., Xiao, W. andWan, B., 2019. Magma replenishment as revealed by textural and geochemical features of plagioclase phenocrysts in subduction-related lavas. Acta Geologica Sinica - English Edition, v.93, p.464-476. |
55. |
Gao, J., Zhu, MT., Wang, XS., Hong, T., Li, GM., Li, JL., Xiao, WJ., Qin, KZ., Zeng, QD., Shen, P., Xu, XW., Zhang, ZC., Zhou, JB., Lai, Y., Zhang, XH., Sun, JG.,Wan, B.Wang, B. 2019. Large-scale porphyry-type mineralization in the Central Asian metallogenic domain: tectonic background, fluid feature and metallogenic deep dynamic mechanism. Acta Geologica Sinica, v.93, p.24-71(in Chinese with English abstract). |
|
|
2018 |
54. |
Han, C., Xiao, W. Su, B., Sakyi, PA., Ao, S., Zhang, J., Zhang, Z.,Wan, B., Song, D., 2018, Geology, Re-Os and U-Pb geochronology and sulfur isotope of the Donggebi porphyry Mo deposit, Xinjiang, NW china, Central Asian Orogenic Belt: Journal of Asian Earth Sciences, v.165, p.270-284. |
53. |
Su, W., Cai, K., Sun, M.,Wan, B., Wang, X., Bao, Z., and Xiao, W., 2018. Carboniferous volcanic rocks associated with back-arc extension in the western Chinese Tianshan, NW China: Insight from temporal-spatial character, petrogenesis and tectonic significance: Lithos, v.310-311, p. 241-254. |
52. |
Zhang, Z., Xiao, W., Ji, W., Majidifard, M., Talebian, M., Rezaeian, M., Xiang, D., Chen, L.,Wan, B., Ao, S, Esmaeili, R., 2018, Geochemistry, zircon U-Pb and Hf isotope for the granitoids from the NW Sanandaj-Sirjan zone, Iran: implications for Mesozoic-Cenozoic episodic magmatism during Neo-Tethyan lithospheric subduction: Gondwana Research, v.62, p.227-245. |
51. |
Chen, H.,Wan, B., Pirajno, F., Chen, Y., and Xiao, B., 2018, Metallogenesis of the Xinjiang Orogens, NW China-New Discoveries and Ore Genesis: Ore Geology Reviews, v.100, p.1-11. |
50. |
Gao, J., Klemd, R., Zhu, M., Wang, X., Li, J.,Wan, B., Xiao, W., Zeng, Q., Shen, P., and Sun, J., 2017, Large-scale porphyry-type mineralization in the Central Asian metallogenic domain: A review: Journal of Asian Earth Sciences, dio:org/10.1016/j.jseaes.2017.10.002. |
49. |
Wang, Y., Cai, K., Sun, M., Xiao, W., De Grave, J.,Wan, B., and Bao, Z., 2017, Tracking the multi-stage exhumation history of the western Chinese Tianshan by Apatite Fission Track (AFT) dating: implication for the preservation of epithermal deposits in the ancient orogenic belt: Ore Geology Reviews, v.100, p.111-132.. |
48. |
Xiao, W., Windley, B. F., Han, C., Liu, W.,Wan, B., Zhang, J. e., Ao, S., Zhang, Z., and Song, D., 2017, Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia: Earth-Science Reviews,dio:10.1016/j.earscirev.2017.09.020. |
47. |
Han, C., Xiao, W., Su, B., Sakyi, P. A., Ao, S., Zhang, J.,Wan, B., Song, D., and Wang, Z., 2016, Ages and tectonic implications of the mafic–ultramafic-carbonatite intrusive rocks and associated Cu-Ni, Fe-P and apatite-vermiculite deposits from the Quruqtagh district, NW China: Ore Geology Reviews, dio:10.1016/j.oregeorev.2016.07.011. |
46. |
Nabatian, G., Li, X. H.,Wan, B., and Honarmand, M., 2017b, The genesis of Mo-Cu deposits and mafic igneous rocks in the Senj area, Alborz magmatic belt, Iran: Mineralogy & Petrology, v.112, p.481-500. |
45. |
Wang, X., Cai, K., Sun, M., Xiao, W., Xia, X.,Wan, B., Bao, Z., and Wang, Y., 2017, Two contrasting late Paleozoic magmatic episodes in the northwestern Chinese Tianshan Belt, NW China: Implication for tectonic transition from plate convergence to intra-plate adjustment during accretionary orogenesis: Journal of Asian Earth Sciences, v. 153, p. 118-138. |
44. |
Bao, Z., Cai, K., Sun, M., Xiao, W.,Wan, B., Wang, Y., Wang, X., and Xia, X., 2018, Continental crust melting induced by subduction initiation of the South Tianshan Ocean: Insight from the Latest Devonian granitic magmatism in the southern Yili Block, NW China: Journal of Asian Earth Sciences, v. 153, p. 100-117. |
|
|
2017 |
43. |
Nabatian, G.,Wan, B., and Honarmand, M., 2017, Whole rock geochemistry, molybdenite Re-Os geochronology, stable isotope and fluid inclusion investigations of the Siah-Kamar deposit, western Alborz-Azarbayjan: New constrains on the porphyry Mo deposit in Iran: Ore Geology Reviews, v. 91, p. 638-659. |
42. |
Xiao, W., Ao, S., Yang, L., Han, C.,Wan, B., Zhang, J. E., Zhang, Z., Li, R., Chen, Z., and Song, S., 2017, Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision: Science China Earth Sciences, v. 60, no. 6, p. 1015-1039. |
41. |
Luo, J., Xiao, W., Wakabayashi, J., Han, C., Zhang, J. e.,Wan, B., Ao, S., Zhang, Z., Tian, Z., and Song, D., 2017, The Zhaheba ophiolite complex in Eastern Junggar (NW China): long lived supra-subduction zone ocean crust formation and its implications for the tectonic evolution in southern Altaids: Gondwana Research, v. 43, p. 17-40. |
40. |
Han, C., Xiao, W., Su, B., Sakyi, P. A., Ao, S., Zhang, J.,Wan, B., Song, D., Zhang, Z., and Wang, Z., 2017, Neoarchean Algoma-type banded iron formation from the Northern Shanxi, the Trans-North China Orogen: SIMS U-Pb age, origin and tectonic setting: Precambrian Research, v. 303, p. 548-572. |
39. |
Zhang, Z., Xiao, W., Majidifard, M. R., Zhu, R.,Wan, B., Ao, S., Chen, L., Rezaeian, M., and Esmaeili, R., 2017, Detrital zircon provenance analysis in the Zagros Orogen, SW Iran: implications for the amalgamation history of the Neo-Tethys: International Journal of Earth Sciences, v. 106, no. 4, p. 1223-1238. |
38. |
Yamini, M. A., Tutti, F., Yamini, M. R. A., Ahmadian, J., andWan, B., 2017Examination of chloritization of biotite as a tool for reconstructing the physicochemical parameters of mineralization and associated alteration in the Zafarghand porphyry copper system, Ardestan, Central Iran: mineral-chemistry and stable isotope analyses: Mineralogy and Petrology, v. 111, no. 5, p. 747-759. |
|
|
2016 |
37. |
Cai, K., Sun, M., Buslov, M., Jahn, B.-m., Xiao, W., Long, X., Chen, H.,Wan, B., Chen, M., and Rubanova, E., 2016, Crustal nature and origin of the Russian Altai: Implications for the continental evolution and growth of the Central Asian Orogenic Belt (CAOB): Tectonophysics, v. 674, p. 182-194. |
36. |
Ao, S., Xiao, W., Jafari, M. K., Talebian, M., Chen, L.,Wan, B., Ji, W., and Zhang, Z., 2016, U–Pb zircon ages, field geology and geochemistry of the Kermanshah ophiolite (Iran): From continental rifting at 79 Ma to oceanic core complex at ca. 36 Ma in the southern Neo-Tethys: Gondwana Research, v. 31, p. 305-318. |
|
|
2015 |
35. |
Tian, Z., Xiao, W., Sun, J., Windley, B. F., Glen, R., Han, C., Zhang, Z., Zhang, J. e.,Wan, B., and Ao, S., 2015, Triassic deformation of Permian Early Triassic arc-related sediments in the Beishan (NW China): last pulse of the accretionary orogenesis in the southernmost Altaids: Tectonophysics, v. 662, p. 363-384. |
|
|
2014 |
34. |
Han, C., Xiao, W., Su, B.-X., Sakyi, P. A., Chen, Z., Zhang, X., Ao, S., Zhang, J.,Wan, B., and Zhang, Z., 2014, Formation age and genesis of the Gongchangling Neoarchean banded iron deposit in eastern Liaoning Province: Constraints from geochemistry and SHRIMP zircon U–Pb dating: Precambrian Research, v. 254, p. 306-322. |
33. |
Xiao, W., Han, C., Liu, W.,Wan, B., Zhang, J. e., Ao, S., Zhang, Z., Song, D., Tian, Z., and Luo, J., 2014, How many sutures in the southern Central Asian Orogenic Belt: Insights from East Xinjiang–West Gansu (NW China)?: Geoscience Frontiers, v. 5, no. 4, p. 525-536. |
32. |
Han, C., Xiao, W., Su, B., Chen, Z., Zhang, X., Ao, S., Zhang, J., Zhang, Z.,Wan, B., and Song, D., 2014, Neoarchean Algoma-type banded iron formations from Eastern Hebei, North China Craton: SHRIMP U-Pb age, origin and tectonic setting: Precambrian Research, v. 251, p. 212-231. |
31. |
Han, C., Xiao, W., Zhao, G., Su, B., Sakyi, P. A., Ao, S.,Wan, B., Zhang, J. e., Zhang, Z., and Wang, Z., 2014, Mid-late Paleozoic metallogenesis and evolution of the Chinese Altai and East Junggar orogenic belt, NW China, Central Asia: Journal of Geosciences, v. 59, no. 3, p. 255-274. |
30. |
Han, C., Xiao, W., Zhao, G., Su, B., Ao, S., Zhang, J.,Wan, B., Wang, Z., Ding, J., and Qu, W., 2014, Re–Os isotopic age of the Hongqiling Cu–Ni sulfide deposit in Jilin Province, NE China and its geological significance: Resource Geology, v. 64, no. 3, p. 247-261. |
29. |
Tian, Z., Xiao, W., Windley, B. F., Lin, L. n., Han, C., Zhang, J. e.,Wan, B., Ao, S., Song, D., and Feng, J., 2014, Structure, age, and tectonic development of the Huoshishan–Niujuanzi ophiolitic mélange, Beishan, southernmost Altaids: Gondwana Research, v. 25, no. 2, p. 820-841. |
28. |
Han, C., Xiao, W., Zhao, G., Su, B., Ao, S., Zhang, J., Zhang, Z.,Wan, B., and Wang, Z., 2014, Tectonic implications of Re-Os dating of molybdenum deposits in the Tianshan–Xingmeng Orogenic Belt, Central Asia: International Geology Review, v. 56, no. 8, p. 985-1006. |
27. |
Lin, L. n., Xiao, W.,Wan, B., Windley, B. F., Ao, S., Han, C., Feng, J., Zhang, J. e., and Zhang, Z., 2014, Geochronologic and geochemical evidence for persistence of south-dipping subduction to late Permian time, Langshan area, Inner Mongolia (China): Significance for termination of accretionary orogenesis in the southern Altaids: American Journal of Science, v. 314, no. 2, p. 679-703. |
26. |
Han, C., Wu, F., Xiao, W., Zhao, G., Ao, S., Zhang, J.,Wan, B., Qu, W., and Du, A., 2014, The Paleoproterozoic Chibaisong Mafic-Ultramafic Intrusion and Cu-Ni Deposit, North China Craton: SHRIMP Zircon U-Pband Re-Os Geochronology and Geodynamic Implications: Journal of Geophysics and Remote Sensing,v. 3, no.1, p. 651-657. |
25. |
Wang, Z.-M., Han, C.-M., Xiao, W.-J.,Wan, B., Sakyi, P. A., Ao, S.-J., Zhang, J.-E., and Song, D.-F., 2014, Petrology and geochronology of Paleoproterozoic garnet-bearing amphibolites from the Dunhuang Block, Eastern Tarim Craton: Precambrian Research, v. 255, p. 163-180. |
24. |
Wu, H., Zhang, L., Pirajno, F., Xiang, P.,Wan, B., Chen, Z., and Zhang, X., 2014, The Jiguanshan porphyry Mo deposit in the Xilamulun metallogenic belt, northern margin of the North China Craton, U–Pb geochronology, isotope systematics, geochemistry and fluid inclusion studies: Implications for a genetic model: Ore Geology Reviews, v. 56, p. 549-565. |
23. |
Feng, J., Xiao, W., Windley, B., Han, C.,Wan, B., Zhang, J. e., Ao, S., Zhang, Z., and Lin, L., 2013, Field geology, geochronology and geochemistry of mafic–ultramafic rocks from Alxa, China: implications for Late Permian accretionary tectonics in the southern Altaids: Journal of Asian Earth Sciences, v. 78, p. 114-142. |
|
|
2013 |
22. |
Han, C., Xiao, W., Zhao, G., Su, B.-X., Sakyi, P. A., Ao, S.,Wan, B., Zhang, J. e., and Zhang, Z., 2013, SIMS U-Pb zircon dating and Re-Os isotopic analysis of the Hulu Cu-Ni deposit, eastern Tianshan, Central Asian Orogenic Belt, and its geological significance: Journal of Geosciences, v. 58, no. 3, p. 251-270. |
21. |
Han, C., Xiao, W., Zhao, G., Su, B., Ao, S., Zhang, J. e., andWan, B., 2013, Age and tectonic setting of magmatic sulfide Cu-Ni mineralization in the Eastern Tianshan Orogenic Belt, Xinjiang, Central Asia: Journal of GEOsciences, v. 58, no. 3, p. 233-250. |
20. |
Han, Z., Han, C., Xiao, W., Zhao, G., Wang, Z., Ao, S., Zhang, J., andWan, B., 2013, Palaeozoic porphyry Cu–Au and ultramafic Cu–Ni deposits in the eastern Tianshan orogenic belt: temporal constraints from U–Pb geochronology: International Geology Review, v. 55, no. 7, p. 842-862. |
19. |
Jiao, S., Yan, D., Zhang, Q., Li, C.,Wan, B., and Tian, Z., 2013, Zircon U-Pb age, geochemistry characteristics of Badaling granitoid complex and their geological significance: Acta Petrologica Sinica, v. 29, no. 3, p. 769-780. (in Chinese with English abstract) |
|
|
2011 |
18. |
Wu, H., Zhang, L.,Wan, B., Chen, Z., Xiang, P., Pirajno, F., Du, A., and Qu, W., 2011, Re–Os and 40 Ar/39 Ar ages of the Jiguanshan porphyry Mo deposit, Xilamulun metallogenic belt, NE China, and constraints on mineralization events: Mineralium Deposita, v. 46, no. 2, p. 171-185. |
17. |
Wu, H., Zhang, L.,Wan, B., Chen, Z., Zhang, X., and Xiang, P., 2011, Geochronological and geochemical constraints on Aolunhua porphyry Mo–Cu deposit, northeast China, and its tectonic significance: Ore Geology Reviews, v. 43, no. 1, p. 78-91. |
16. |
Chen, Z., Zhang, L.,Wan, B., Wu, H., and Cleven, N., 2011, Geochronology and geochemistry of the Wunugetushan porphyry Cu–Mo deposit in NE China, and their geological significance: Ore Geology Reviews, v. 43, no. 1, p. 92-105. |
15. |
Zhang, X., Zhang, L., Xiang, P.,Wan, B., and Pirajno, F., 2011, Zircon U–Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: constraints on the ore-forming age and tectonic setting: Gondwana Research, v. 20, no. 1, p. 137-148. |
|
|
2010 |
14. |
Wang, Q., Shu, L. S., Charvet, J., Faure, M., Ma, H., Natal'In, B., Gao, J., Kroner, A., Xiao, W., and Liu, J., Winley, B., Chen, Y., Glen, R., Jian, P., Zhang, W., Seltmann, R., Wile, S., Choulet, F.,Wan, B., Quinn, C., Agramonte, Y., Shang, Q., Zhang, W., Wang, B., Lin, W.,2010, Understanding and study perspectives on tectonic evolution and crustal structure of the Paleozoic Chinese Tianshan: Episodes Journal of International Geoscience, v. 33, no. 4, p. 242-266. |
13. |
Guo, Q., Pan, C., Xiao, W., Qu, J., Ao, S., Zhang, J., Song, D., Tian, Z.,Wan, B., and Han, C., 2010, Geological and geochemical characteristics of the Yandong porphyry copper deposits in Hami, Xinjiang: Xinjiang Geology, v. 28, no. 4, p. 419-426(in Chinese with English abstract). |
12. |
Zhang LC Wu H, Xiang P, Zhang X, Chen Z,Wan B.2010. Ore-forming processes and mineralization of complex tectonic system during the Mesozoic: A case from Xilamulun Cu-Mo metallogenic belt.Acta Petrologica Sinica,25 (05): 1351-1362 (in Chinese with English abstract). |
11. |
Wu H, Zhang LC, Chen Z,Wan B.Xiang P, Zhang X. 2010. Hypersaline, high-oxygen fugacity and F-rich fluid inclusions in Jiguanshan porphyry molybdenum deposit, Xilamulun metallogenic belt.Acta Petrologica Sinica, 25 (05): 1363-1374 (in Chinese with English abstract). |
|
|
2009 |
10. |
Xiang, P, Zhang, LC, Wu, HY, Zhang, XJ, Chen, ZG, andWan, B, 2009, Ages of the zircons from ore-bearing porphyries in II-III ore area of Kalaxianger porphyry copper ore belt in Qinghe, Xinjiang and its geological significance: Acta Petrologica Sinica, v. 25, no. 6, p. 1474-1483 (in Chinese with English abstract). |
9. |
Zhang, L.-c., Wu, H.-y.,Wan, B., and Chen, Z.-g., 2009, Ages and geodynamic settings of Xilamulun Mo–Cu metallogenic belt in the northern part of the North China Craton: Gondwana Research, v. 16, no. 2, p. 243-254. |
|
|
2008 |
8. |
Zhang, L.-c., Zhou, X.-h., Ying, J.-f., Wang, F., Guo, F.,Wan, B., and Chen, Z.-g., 2008, Geochemistry and Sr–Nd–Pb–Hf isotopes of Early Cretaceous basalts from the Great Xinggan Range, NE China: Implications for their origin and mantle source characteristics: Chemical Geology, v. 256, no. 1, p. 12-23. |
7. |
Chen Z, Zhang LC,Wan B, Zhang Y, Wu H. 2008. Geochemistry and geological significances of ore-forming porphyry with low Sr and Yb value in Wunugemshan copper-molybdenum deposit, Inner Mongolia.Acta Petrologica Sinica,24 (01): 115-128 (in Chinese with English abstract). |
6. |
Chen Z, Zhang LC, Wu H.Wan B, Zeng Q. 2008. Geochemistry study and tectonic background of A style host granite in Nianzigou molybeenum deposit in Xilamulun molybdenum metallogenic belt, Inner Mongolia.Acta Petrologica Sinica,24 (04): 879-889 (in Chinese with English abstract). |
5. |
Wu H, Zhang LC, Chen Z,Wan B, 2008. Geochemistries, tectonic setting and mineralization potentiality of the ore-bearing monzogranite in the Kulitu molybdenum(copper)deposit of Xar moron metallogetic belt, Inner Mongolia.Acta Petrologica Sinica, 24 (04): 867-878 (in Chinese with English abstract). |
|
|
2006 |
4. |
Zhang, L. C., Xia, B., Niu, H. C., Li, W. Q., Fang, W. X., Tang, H. F., andWan, B., 2006, Metallogenic systems and belts developed on the late Paleozoic continental margin in Xinjiang: Acta Petrologica Sinica, v. 22, no. 5, p. 1387-1398(in Chinese with English abstract). |
3. |
Chen, Z. G., Zhang, L. C., Zhou, X. H.,Wan, B., Ying, J. F., and Wang, F., 2006, Geochronology and geochemical characteristics of volcanic rocks section in Manzhouli Xinyouqi, Inner-Mongolia: Acta Petrologica Sinica, v. 22, no. 12, p. 2971-2986(in Chinese with English abstract). |
2. |
Zhang LC,Wan B, Li W, Tang H. 2006. Geochemistry and tectonic setting of mineralization porphyries on the southern margin of Tuha basin, Xinjiang. Acta Petrologica Sinica, 22 (1): 225-235 (in Chinese with English abstract). |
1. |
Zhang, L. C.,Wan, B., Jiao, X. J., and Zhang, R., 2006, Characteristics and geological significance of adakitic rocks in copper-bearing porphyry in Baogutu, western Junggar: Geology in China, v. 33, no. 3, p. 626-631(in Chinese with English abstract). | |
|
|
|